Skip to main content

Managing Uncertainty in Large-Scale Inversions for the Oil and Gas Industry with Big Data

  • Chapter
  • First Online:
Book cover Guide to Big Data Applications

Part of the book series: Studies in Big Data ((SBD,volume 26))

  • 4576 Accesses

Abstract

Inverse problems arise in almost all fields of science when parameters of a postulated model have to be determined from a set of observed data. Due to the increasing volume of data collected by the oil and gas industry, there is an urgent need for addressing large-scale inverse problems. In this article, after examining both deterministic and statistical methods that are scalable for managing large volume of data, we present the MapReduce paradigm as a potential speed up technique for future implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bengio, Y., Larochelle, H., & Vincent, P. (2005). Non-local manifold parzen windows. In Advances in Neural Information Processing Systems (pp. 115–122).

    Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning Berlin, Heidelberg: Springer.

    MATH  Google Scholar 

  • Bittar, M., & Aki, A. (2015). Advancement and economic benefit of geosteering and well- placement technology. The Leading Edge, 34(5), 524–528.

    Article  Google Scholar 

  • Bittar, M. S. (2002, November 5). Electromagnetic wave resistivity tool having a tilted an- tenna for geosteering within a desired payzone. Google Patents. (US Patent 6,476,609)

    Google Scholar 

  • Bittar, M. S., Klein, J. D., Randy B., Hu, G., Wu, M., Pitcher, J. L., et al. (2009). A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation. SPE Reservoir Evaluation & Engineering, 12(02), 270–279.

    Google Scholar 

  • Calderhead, B. (2014). A general construction for parallelizing metropolis- hastings algorithms. Proceedings of the National Academy of Sciences, 111(49), 17408–17413.

    Article  Google Scholar 

  • Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M. (2006). Measurement error in nonlinear models: a modern perspective. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  • Chen, J., & Yu, Y. (2014). An improved complex image theory for fast 3d resistivity modeling and its application to geosteering in unparallel layers. In SPE Annual Technical Conference and Exhibition.

    Google Scholar 

  • Chib, S., & Greenberg, E. (1995). Understanding the metropolis-hastings algorithm. The American Statistician, 49(4), 327–335.

    Google Scholar 

  • Dean, J., & Ghemawat, S. (2008). Mapreduce: simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.

    Article  Google Scholar 

  • Dupuis, C., & Denichou, J.-M. (2015). Automatic inversion of deep-directional-resistivity measurements for well placement and reservoir description. The Leading Edge, 34(5), 504–512.

    Article  Google Scholar 

  • Dupuis, C., Omeragic, D., Chen, Y. H., & Habashy, T. (2013). Workflow to image unconformities with deep electromagnetic LWD measurements enables well placement in complex scenarios. In SPE Annual Technical Conference and Exhibition.

    Google Scholar 

  • Ellis, D. V., & Singer, J. M. (2007). Well logging for earth scientists. Dordrecht: Springer Science & Business Media.

    Book  Google Scholar 

  • Faghmous, J. H., Le, M., Uluyol, M., Kumar, V., & Chatterjee, S. (2013). A parameter-free spatio-temporal pattern mining model to catalog global ocean dynamics. In ICDM (pp. 151–160).

    Google Scholar 

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 457–472.

    Google Scholar 

  • Hadamard, J. (1923). Lectures on cauchy’s problem in linear differential equations. London: Yale University Press.

    MATH  Google Scholar 

  • Hartmann, A., Vianna, A., Maurer, H.-M., Sviridov, M., Martakov, S., Lautenschläger, U., et al. (2014). Verification testing of a new extra-deep azimuthal resistivity measurement. In SPWLA 55th Annual Logging Symposium.

    Google Scholar 

  • Iglesias, M., & Stuart, A. M. (2014). Inverse problems and uncertainty quantification. SIAM News, volume July/August.

    Google Scholar 

  • Kaipio, J., & Somersalo, E. (2005). Statistical and computational inverse problems New York: Springer.

    MATH  Google Scholar 

  • Knapik, B. T., Vaart, A. W. V. D., & Zanten, J. H. V. (2011). Bayesian inverse problems with Gaussian priors. The Annals of Statistics, 39(5), 2626–2657.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Q., Omeragic, D., Chou, L., Yang, L., & Duong, K. (2005). New directional electromagnetic tool for proactive geosteering and accurate formation evaluation while drilling. In SPWLA 46th Annual Logging Symposium.

    Google Scholar 

  • Li, S., Chen, J., & Binford Jr, T. L. (2014). Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle. In SPWLA 55th Annual Logging Symposium.

    Google Scholar 

  • Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(1–3), 503–528.

    Article  MathSciNet  MATH  Google Scholar 

  • Mack, S. G., Wisler, M., & Wu, J. Q. (2002). The design, response, and field test results of a new slim hole LWD multiple frequency resistivity propagation tool. In SPE Annual Technical Conference and Exhibition.

    Google Scholar 

  • Marin, J.-M., Mengersen, K., & Robert, C. P. (2005). Bayesian modelling and inference on mixtures of distributions. In Handbook of statistics (Vol. 25, pp. 459–507).

    Google Scholar 

  • Menke, W. (2012). Geophysical data analysis: Discrete inverse theory (Vol. 45). San Diego: Academic Press.

    MATH  Google Scholar 

  • Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov chain Monte Carlo (Vol. 2, pp. 113–162). Boca Raton: Chapman & Hall/CRC Press.

    Google Scholar 

  • Neiswanger, W., Wang, C., & Xing, E. (2013). Asymptotically exact, embarrassingly parallel MCMC. arXiv preprint arXiv:1311.4780.

    Google Scholar 

  • Nelson, E. B. (1990). Well cementing (Vol. 28). London: Newnes.

    Google Scholar 

  • Newell, D. L., & Carey J. W. (2013). Experimental evaluation of wellbore integrity along the cement-rock boundary. Environmental Science & Technology, 47(1), 276–282.

    Article  Google Scholar 

  • Omeragic, D., Li, Q., Chou, L., Yang, L., Duong, K., Smits, J. W., et al. (2005). Deep directional electromagnetic measurements for optimal well placement. In SPE Annual Technical Conference and Exhibition.

    Google Scholar 

  • Pal, K. (2016). Hadoop key terms, explained. Retrieved from http://www.kdnuggets.com/2016/05/hadoop-key-terms-explained.html [Online]. Accessed 27 August 2016.

  • Pelletier, B. (2005). Kernel density estimation on Riemannian manifolds. Statistics & Probability Letters, 73(3), 297–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Robert, C., & Casella, G. (2004). Monte carlo statistical methods (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Seydoux, J., Legendre, E., Mirto, E., Dupuis, C., Denichou, J.-M., Bennett, N., et al. (2014). Full 3d deep directional resistivity measurements optimize well placement and provide reservoir-scale imaging while drilling. In SPWLA 55th Annual Logging Symposium.

    Google Scholar 

  • Song, Q., Wu, M., & Liang, F. (2014). Weak convergence rates of population versus single-chain stochastic approximation MCMC algorithms. Advances in Applied Probability, 46(4), 1059–1083.

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 1, 267–288.

    MathSciNet  MATH  Google Scholar 

  • Vidic, R. D., Brantley S. L., Vandenbossche, J. M., Yoxtheimer, D., & Abad, J. D. (2013). Impact of shale gas development on regional water quality. Science, 340 (6134).

    Google Scholar 

  • Wang, T., Chemali, R., Hart, E., & Cairns, P. (2007). Real-time formation imaging, dip, and azimuth while drilling from compensated deep directional resistivity. In 48th Annual Logging Symposium.

    Google Scholar 

  • Wikipedia. (2016). Mixture model — wikipedia, the free encyclopedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Mixturemodel{&}oldid=735277579 [Online]. Accessed 23 August 2016.

  • Xu, C. (2013). Reservoir Description with Well-Log-Based and Core-Calibrated Petrophysical Rock Classification (unpublished doctoral dissertation). University of Texas at Austin.

    Google Scholar 

  • Zhang, Y., & Sutton, C. A. (2011). Quasi-Newton methods for Markov chain monte carlo. In Advances in Neural Information Processing Systems (pp. 2393–2401).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuqing Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Chen, J., Huang, Y., Binford, T.L., Wu, X. (2018). Managing Uncertainty in Large-Scale Inversions for the Oil and Gas Industry with Big Data. In: Srinivasan, S. (eds) Guide to Big Data Applications. Studies in Big Data, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-53817-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53817-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53816-7

  • Online ISBN: 978-3-319-53817-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics