Advertisement

Proof and Argument Based Verifiable Computing

Chapter
  • 557 Downloads
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

In this chapter the state of the art with respect to proof based verifiable computing schemes is presented. In this setting a prover wants to convince a verifier of the correctness of a computed result. The first proof based solutions that achieve this were interactive proof systems. Depending on the computation power of the prover we distinguish here between proof based and argument based approaches. While all proof based schemes are interactive protocols, the argument based solutions were further improved, such that also non-interactive solutions are available. In this chapter, we first provide an introduction presenting the setting and the notions, i.e. quadratic span program (QSP), quadratic arithmetic program (QAP), and succinct non-interactive arguments of knowledge (SNARKs). Then, we present the interactive proof based solutions, i.e. “Verifiable Computation with Massively Parallel Interactive Proofs” by Thaler et al. and “Allspice” by Vu et al., and the argument based approaches, i.e. “Pepper” by Setty et al., “Ginger” by Setty et al., “Zaatar” by Setty et al., “Pantry” by Braun et al., and “River” by Xu et al. Afterwards, we present the definitions and solutions for the non-interactive argument based verifiable computing schemes, i.e. “Pinocchio” by Parno et al., “Geppetto” by Costello et al., “SNARKs for C” by Ben-Sasson et al., “Succinct Non-interactive Zero Knowledge for a von Neumann Architecture” by Ben-Sasson et al., “Buffet” by Wahby et al., “ADSNARK” by Backes et al., and “Block Programs: Improving Efficiency of Verifiable Computation for Circuits with Repeated Substructures” by Xu et al.

References

  1. 1.
    S. Arora, S. Safra, Probabilistic checking of proofs: a new characterization of NP. J. ACM 45, 70–122 (1998)Google Scholar
  2. 2.
    L. Babai, L. Fortnow, L.A. Levin, M. Szegedy, Checking computations in polylogarithmic time, in Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (1991), pp. 21–31Google Scholar
  3. 3.
    M. Backes, M. Barbosa, D. Fiore, R.M. Reischuk, ADSNARK: nearly practical and privacy-preserving proofs on authenticated data, in 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, 17–21 May 2015, pp. 271–286Google Scholar
  4. 4.
    E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, S.P. Vadhan, Short PCPs verifiable in polylogarithmic time, in 20th Annual IEEE Conference on Computational Complexity (CCC 2005) (2005), pp. 120–134Google Scholar
  5. 5.
    E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, S.P. Vadhan, Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36, 889–974 (2006)Google Scholar
  6. 6.
    E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, M. Virza, SNARKs for C: verifying program executions succinctly and in zero knowledge, in Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Proceedings, Part II, Santa Barbara, CA, 18–22 August 2013, pp. 90–108Google Scholar
  7. 7.
    E. Ben-Sasson, A. Chiesa, E. Tromer, M. Virza, Succinct non-interactive zero knowledge for a von Neumann architecture, in Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, 20–22 August 2014, pp. 781–796Google Scholar
  8. 8.
    N. Bitansky, R. Canetti, A. Chiesa, E. Tromer, From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again, in Innovations in Theoretical Computer Science 2012, Cambridge, MA, 8–10 January 2012, pp. 326–349Google Scholar
  9. 9.
    N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, O. Paneth, Succinct non-interactive arguments via linear interactive proofs, in TCC (2013), pp. 315–333Google Scholar
  10. 10.
    B. Braun, A.J. Feldman, Z. Ren, S.T.V. Setty, A.J. Blumberg, M. Walfish, Verifying computations with state, in ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, 3–6 November 2013, pp. 341–357Google Scholar
  11. 11.
    R. Canetti, B. Riva, G.N. Rothblum, Two protocols for delegation of computation, in Information Theoretic Security - 6th International Conference, ICITS 2012, Proceedings, Montreal, QC, 15–17 August 2012, pp. 37–61Google Scholar
  12. 12.
    C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno, S. Zahur, Geppetto: versatile verifiable computation, in 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, 17–21 May 2015, pp. 253–270Google Scholar
  13. 13.
    A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification and signature problems, in CRYPTO (1986), pp. 186–194Google Scholar
  14. 14.
    D. Fiore, A. Nitulescu, On the (in)security of SNARKs in the presence of oracles, in Theory of Cryptography - 14th International Conference, TCC 2016-B, Proceedings, Part I, Beijing, 31 October–3 November 2016, pp. 108–138Google Scholar
  15. 15.
    R. Gennaro, C. Gentry, B. Parno, M. Raykova, Quadratic span programs and succinct NIZKs without PCPs, in Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, Athens, 26–30 May 2013, pp. 626–645Google Scholar
  16. 16.
    S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 186–208 (1989)Google Scholar
  17. 17.
    S. Goldwasser, Y.T. Kalai, G.N. Rothblum, Delegating computation: interactive proofs for muggles, in Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, BC, 17–20 May 2008, pp. 113–122Google Scholar
  18. 18.
    http://cs.utexas.edu/pepper. Retrieved 18 Apr 2016
  19. 19.
  20. 20.
  21. 21.
    Y. Ishai, E. Kushilevitz, R. Ostrovsky, Efficient arguments without short PCPs, in 22nd Annual IEEE Conference on Computational Complexity (CCC 2007), San Diego, CA, 13–16 June 2007, pp. 278–291Google Scholar
  22. 22.
    J. Kilian, A note on efficient zero-knowledge proofs and arguments (extended abstract), in Proceedings of the 24th Annual ACM Symposium on Theory of Computing, Victoria, BC, 4–6 May 1992, pp. 723–732Google Scholar
  23. 23.
    S. Micali, Computationally sound proofs. SIAM J. Comput. 30, 1253–1298 (2000)Google Scholar
  24. 24.
    B. Parno, J. Howell, C. Gentry, M. Raykova, Pinocchio: nearly practical verifiable computation, in 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, 19–22 May 2013, pp. 238–252Google Scholar
  25. 25.
    O. Reingold, G.N. Rothblum, R.D. Rothblum, Constant-round interactive proofs for delegating computation, in Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, 18–21 June 2016, pp. 49–62Google Scholar
  26. 26.
    S.T.V. Setty, R. McPherson, A.J. Blumberg, M. Walfish, Making argument systems for outsourced computation practical (sometimes), in 19th Annual Network and Distributed System Security Symposium, NDSS 2012, San Diego, CA, 5–8 February 2012Google Scholar
  27. 27.
    S.T.V. Setty, V. Vu, N. Panpalia, B. Braun, A.J. Blumberg, M. Walfish, Taking proof-based verified computation a few steps closer to practicality, in Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, 8–10 August 2012, pp. 253–268Google Scholar
  28. 28.
    S.T.V. Setty, B. Braun, V. Vu, A.J. Blumberg, B. Parno, M. Walfish, Resolving the conflict between generality and plausibility in verified computation, in Eighth Eurosys Conference 2013, EuroSys ’13, Prague, 14–17 April 2013, pp. 71–84Google Scholar
  29. 29.
    J. Thaler, Time-optimal interactive proofs for circuit evaluation, in Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Proceedings, Part II, Santa Barbara, CA, 18–22 August 2013, pp. 71–89Google Scholar
  30. 30.
    J. Thaler, M. Roberts, M. Mitzenmacher, H. Pfister, Verifiable computation with massively parallel interactive proofs, in 4th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’12, Boston, MA, 12–13 June 2012Google Scholar
  31. 31.
    V. Vu, S.T.V. Setty, A.J. Blumberg, M. Walfish, A hybrid architecture for interactive verifiable computation, in 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, 19–22 May 2013, pp. 223–237Google Scholar
  32. 32.
    R.S. Wahby, S.T.V. Setty, Z. Ren, A.J. Blumberg, M. Walfish, Efficient RAM and control flow in verifiable outsourced computation, in 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, CA, 8–11 February 2015Google Scholar
  33. 33.
    M. Walfish, A.J. Blumberg, Verifying computations without reexecuting them. Commun. ACM 58, 74–84 (2015)Google Scholar
  34. 34.
    G. Xu, G.T. Amariucai, Y. Guan, Verifiable computation with reduced informational costs and computational costs, in Computer Security - ESORICS 2014 - 19th European Symposium on Research in Computer Security, Proceedings, Part I, Wroclaw, 7–11 September 2014, pp. 292–309Google Scholar
  35. 35.
    G. Xu, G.T. Amariucai, Y. Guan, Block programs: improving efficiency of verifiable computation for circuits with repeated substructures, in Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, ASIA CCS ’15, Singapore, 14–17 April 2015, pp. 405–416Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Theoretische InformatikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations