Skip to main content

Results of Deep Soundings in Europe

  • Chapter
  • First Online:
Induction Soundings of the Earth's Mantle

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

  • 311 Accesses

Abstract

In the first half of the XX century, there appeared new approaches to deep induction soundings. The theory of magnetovariation as well as magnetotelluric soundings was formulated just before the World War Two. Spatial derivatives of response functions (induction arrows) were obtained for the long periods. New phenomena have been detected by this method: secular variations of the Earth’s apparent resistivity and the rapid changes of induction arrows over the last 50 years. The first ones can be correlated with the number of earthquakes and the second ones—with geomagnetic jerks in Central Europe. Extensive studies of geoelectrical structure of the crust and mantle were realized in the frame of a series of international projects. New information about geoelectrical structures of the crust in Northern Europe and Ukraine was obtained by deep electromagnetic soundings involving powerful, controlled sources. An influence of the crust magnetic permeability on the deep sounding results was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramowitz, T., Thybo, H., Perchuc, E.: Tomographic inversion of seismic P- and S-wave velocities from the Baltic Shield based on FENNOLORA data. Tectonophysics 358, 151–174 (2002)

    Article  Google Scholar 

  • Alldredge, L.R.: Deep mantle conductivity. J. Geophys. Res. 82, 5427–5431 (1977)

    Article  Google Scholar 

  • Banks, R.J.: Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys. J. R. Astron. Soc. 17, 457–487 (1969)

    Article  Google Scholar 

  • Bates, R.H.T., Boerner, W.M., Dunlop, G.R.: An extended Rytov approximation and its significance for remote sensing and inverse scattering. Optics Commun. 18(4), 421–423 (1976)

    Article  Google Scholar 

  • Becken, M., Pedersen, L.B.: Transformation of VLF anomaly maps into apparent resistivity and phase. Geophysics 68(2), 497–505 (2000)

    Article  Google Scholar 

  • Becken, M., Ritter, O., Burckhardt, H.: Mode separation of magnetotelluric responses in the three-dimensional environments. Geophys. J. Int. 172, 67–86 (2008)

    Article  Google Scholar 

  • Berdichevsky, M.N., Vanyan, L.L., Fainberg, E.B.: The frequency sounding of the Earth using spherical analysis results of geomagnetic variations. Geomag. Aeron. 9, 372–374 (1969) (in Russian)

    Google Scholar 

  • Berdichevsky, M.N., Zhdanov, M.S.: Interpretation of anomalies alternating electromagnetic field of the Earth. Nedra, Moscow (1981) (in Russian)

    Google Scholar 

  • Cagniard, L.: Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 18(3), 605–635 (1953). doi:10.1190/1.1437915

    Article  Google Scholar 

  • Coe, R., Prevot, M., Camps, P.: New evidence for extraordinary rapid change of the geomagnetic field during a reversal. Nature 374, 687–697 (1995)

    Article  Google Scholar 

  • Courtillot, V., Le Mouel, J.L.: On the long-period variations of the Earth’s magnetic field from 2 months to 20 years. J. Geophys. Res. 81(N 17), 2941–2950 (1976)

    Google Scholar 

  • Constable, S.C., Parker, R.L., Constable, C.G.: Occam’s inversion: a practical algorithm for inversion of electromagnetic data. Geophysics 52, 289–300 (1987)

    Article  Google Scholar 

  • Dmitriev, V.I., Berdichevsky, M.N.: A generalized model of impedance. Izv. Phys. Solid Earth 38(10), 897–903 (2002)

    Google Scholar 

  • Ducruix, J., Courtillot, V., Le Mouel, J.L.: The late 1960s secular variation impulse, the eleven year magnetic variation and the electrical conductivity of the deep mantle. Geophys. J. Roy. Astr. Soc. 61, 73–94 (1980)

    Article  Google Scholar 

  • Egbert, G., Booker, J.R.: Very long period magnetotellurics at Tucson observatory: implications for mantle conductivity. J. Geophys. Res. 97(B11), 15099–15112 (1992)

    Article  Google Scholar 

  • Ernst, T., Brasse, H., Cherv, V., Hoffmann, N., Jankowski, J., Jozwiak, W., Kreutzmann, A., Neska, A., Palshin, N., Pedersen, L.B., Smirnov, M., Sokolova, E., Varentsov, I.M.: Electromagnetic images of the deep structure of the trans-European Suture Zone beneath Polish Pomerania. Geophys. Res. Lett. 35, L15307 (2008). doi:10.1029/2008GL034610

    Article  Google Scholar 

  • Grad, M., Tiira, T.: The Moho Depth of the European Plate. European Seismological Commission, Warsaw/Helsinki (2007)

    Google Scholar 

  • Guglielmi, A.V., Gokhberg, M.B.: On the magnetotelluric sounding in the seismically active areas. Izv. Physics of the Solid Earth 33(11), 122–123 (1987) (in Russian)

    Google Scholar 

  • Guterch, A., Grad, M., Janik, T., Materzok, R., Luosto, U., Yliniemi, J., Luck, E., Schulze, A., Forste, K.: Crustal structure of the transition zone between Precambrian and Variscan Europe from new seismic data along LT7 profile (NW Poland and eastern Germany). Geophy. C.R. Acad. Sci. Paris t. 319(Series II), 1489–1496 (1994)

    Google Scholar 

  • Harwood, J.M., Malin, S.R.: Sunspot cycle influence on the geomagnetic field. Geoph. J. Roy. Astron. Soc. 50, 605–618 (1977)

    Article  Google Scholar 

  • http://www.seismo.helsinki.fi/mohomap/; http://www.igf.fuw.edu.pl/mohomap/

  • Isicara, A.M.: Solar cycle geomagnetic variation. ActaGeodaet. Geophys. et Montan. Acad. Sci. Hung. 12(1–3), 397-405 (1977)

    Google Scholar 

  • Ingerov, A.I., RokityanskyI, I., Tregubenko, V.I.: Forty years of MTS studies in the Ukraine. Earth Planet Space 51, 1127–1133 (1999)

    Article  Google Scholar 

  • Janik, T., Yliniemi, J., Grad, M., Thybo, H., Tiira, T., POLONAISE P2 Working Group 1.: Crustal structure across the TESZ along POLONAISE’97 seismic profile P2 in NW Poland. Tectonophysics 360(1–4), 129–152 (2002). doi:10.1016/S0040-1951(02)00353-0

  • Jozwiak, W.: Application of a stochastic method to the global inverse problem. ActaGeophys. Polon. 41(N 4), 523–533 (1993)

    Google Scholar 

  • Jóżwiak, W.: Large-scale crustal conductivity in Central Europe and its correlation to deep tectonic structures. Pure. appl. Geophys. 169, 1737–1747 (2012)

    Article  Google Scholar 

  • Jóżwiak, W.: Electromagnetic study of lithospheric structure in the marginal zone of East European Craton in NW Poland. Acta Geophys. 61(4), 567–574 (2013)

    Google Scholar 

  • Kiss, J., Szarka, L., Pracser, E.: Second order magnetic phase transition in the Earth. Geophys. Res. Lett. 32, L24310 (2005)

    Article  Google Scholar 

  • Knittle, E., Jeanloz, R.: Simulating the core-mantle boundary: an experimental study of high-pressure reactions between silicates and liquid iron. Geophys. Res. Lett. 16, 609–612 (1989)

    Article  Google Scholar 

  • Korja, T.: How is the European lithosphere imaged by magnetotelluric? Surv. Geophys. 28, 239–272 (2007)

    Article  Google Scholar 

  • Korja, T., Engels, M., Zhamaletdinov, A.A., Kovtun, A.A., Palshin, N.A., The BEAR Working Group.: Crustal conductivity in Fennoscandia—a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54, 535–558 (2002)

    Google Scholar 

  • Kolomyceva, G.I.: On electrical conductivity distribution in the Earth’s mantle from data of the secular variations of the geomagnetic field. Geomag. Aeron. 12(6), 1082–1085 (1972) (in Russian)

    Google Scholar 

  • Kuckes, A.F.: Relations between electrical conductivity of a mantle and fluctuating magnetic fields. Geophys. J. R. astron. Soc. 32, 319–331 (1973)

    Google Scholar 

  • Kuckes, A.F., Nekut, A.G., Thompson, B.G.: A geomagnetic scattering theory for evaluation of the Earth structure. Geophys. J. R. astron. Soc. 8, 319–330 (1985)

    Article  Google Scholar 

  • Kuvshinov, A.: Deep electromagnetic studies from land, sea, and space. Progress status in the past 10 years. SurvGeophys. 33, 169–209 (2012). doi:10.1007/s10712-011-9118-2

    Google Scholar 

  • Leontovich, M.A. On approximate boundary conditions for an electromagnetic field on the surface of highly conductive bodies. In: “Issledovania po rasprostraneniu radiovoln”, pp. 5–12. Academy of Sciences of the USSR, Moscow (1948) (in Russian)

    Google Scholar 

  • Martinec, Z., Pěč, K.: The influence of the core-mantle boundary irregularities on the mass density distribution inside the Earth. In: A. Vogel, C.O. Ofoegbu, R. Gorenflo, and B. Ursin (eds.), Geophysical Data Inversion. Methods and Applications, Proc. 7th Int. Math. Geophys. Seminar, 8–11 February 1989, Free University of Berlin, 233–256 (1990). doi:10.1007/978-3-322-89416-8_15

  • McDonald, K.L.: Penetration of the geomagnetic secular field through a mantle with variable conductivity. J. Geophys. Res. 62(1), 117–141 (1957)

    Google Scholar 

  • McLeod, M.: Magnetospheric and ionospheric signals in magnetic observatory monthly means: electrical conductivity of the deep mantle. J. Geophys. Yes. 99, 13577–13590 (1994)

    Article  Google Scholar 

  • Merrill, R.T., McElhinny, M.W., McFadden, P.L.: The magnetic field of the Earth: paleomagnetism, the core, and the deep mantle, p. 531. Academic Press, San Diego, California (1996)

    Google Scholar 

  • Nowożyński, K.: Estimation of magnetotelluric transfer functions in the time domain over a wide frequency band. Geophys. J. Int. 158, 32–41 (2004)

    Article  Google Scholar 

  • Olsen, N.: Day-to-day C-response estimation for Sq from 1 cpd to 6 cpd using the Z: Y method. J. Geomag. Geoelectr. 44, 433–447 (1992)

    Article  Google Scholar 

  • Olsen, N.: The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr. Geophys. J. Int. 133, 298–308 (1998)

    Article  Google Scholar 

  • Olsen, N.: Long-period (30 days–1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophys. J. Int. 138(179), 187 (1999a)

    Google Scholar 

  • Olsen, N.: Induction studies with satellite data. Surv. Geophys. 20, 309–340 (1999b)

    Article  Google Scholar 

  • Oraevsky, V.N., Rotanova, N.M., Bondar, T.N., Abramova, D.Y., Semenov, V.Y.: On the radial geoelectrical structure of the mid-mantle from magnetovariation sounding using MAGSAT data. J. Geomagn. Geoelectr. 45, 1415–1423 (1993)

    Article  Google Scholar 

  • Papitashvili, N.E., Rotanova, N.M., Fishman, V.M.: Estimation of conductivity of the lower mantle from the analysis of 60- and 30-year variations of geomagnetic field. Geomagnet. Aerono. 22(6), 1010–1015 (1982) (in Russian)

    Google Scholar 

  • Parker, R.L., Whaler, K.A.: Numerical method for establishing solutions to the inverse problem of electromagnetic induction. J. Geophys. Res. 86, 9574–9584 (1981)

    Article  Google Scholar 

  • Pek, J.: Spectral magnetotelluric impedances for an anisotropic layered conductor. ActaGeophys. Polonica. 50(4), 619–643 (2002)

    Google Scholar 

  • Pek, J., Santos, X.: Magnetotelluric impedances and parametric sensitivities for 1-D anisotropic layered media. Computers Geosciences 28, 939–950 (2002)

    Article  Google Scholar 

  • Petrishchev, M.S., Semenov, V.Y.: Secular variations of the Earth’s apparent resistivity. Earth Planet. Sci. Lett. 361, 1–6 (2013)

    Article  Google Scholar 

  • Piromallo, C., Morelli, A.: P wave tomography of the mantle under the Alpine-Mediterranean area. J. Geophys. Res. 108, B2, 2065 (2003). doi:10.1029/2002JB001757

  • Praus, O., Pecova, J., Cerv, V., Kovacikova, S., Pek, J., Velimsky, J.: Electrical conductivity at mid-mantle depths estimated from the data of Sq and long period geomagnetic variations. Stud. Geophys. Geod. 55, 241–264 (2011)

    Article  Google Scholar 

  • Roberts, R.G.: The long period electromagnetic response of the Earth. Geophys. J. R. Astron Soc. 2, 547–572 (1984)

    Article  Google Scholar 

  • Roberts, R.G.: The deep electrical structure of the Earth. Geophys. Roy. Astr. Soc. 85(3), 563–600 (1986)

    Article  Google Scholar 

  • Rokityansky, I.I.: Geomagnetic investigation of the Earth’s crust and mantle, p. 381. Springer, Berlin (1982)

    Book  Google Scholar 

  • Rytov, S.M.: Skin-effect calculations by the disturbance method. J. Exp. Theor. Phys. 10(2), 180–189 (1940) (in Russian)

    Google Scholar 

  • Schmucker, U.: Anomalies of geomagnetic variations in the southwestern United States. Bull. Scripps Inst. Ocean. 13, 1–165 (1970)

    Google Scholar 

  • Schmucker, U.: A spherical harmonic analysis of solar daily variations in the years 1964-1965: response estimates and source fields for global induction—I/II. Methods/Results. Geophys. J. Int. 136, 439–476 (1999)

    Article  Google Scholar 

  • Schultz, A., Larsen, J.C.: On the electrical conductivity of the mid-mantle: I. Calculation of equivalent scalar magnetotelluric response function. Geophys. J. R. Astron. Soc. 88, 733–761 (1987)

    Article  Google Scholar 

  • Schultz, A., Larsen, J.C.: On the electrical conductivity of the mid-mantle: II. Delineation of heterogeneity by application of extreme inverse solutions. Geophys. J. Int. 101, 565–589 (1990)

    Article  Google Scholar 

  • Schultz, A.: On the vertical gradient and associated heterogeneity in mantle electrical conductivity. Phys. Earth Planet. Int. 64, 68–86 (1990)

    Google Scholar 

  • Schultz, A., Kurtz, R.D., Chave, A.D., Jones, A.G.: Conductivity discontinuities in the upper mantle beneath a stable Craton. Geophys. Res. Lett. 20(24), 2941–2944 (1993)

    Google Scholar 

  • Schultz, A., Zhang, T.S.: Regularized spherical harmonic analysis and the 3D electromagnetic response of the Earth. Geophys. J. Int. 116, 141–156 (1994)

    Article  Google Scholar 

  • Semenov, V.Y.: Evaluation of mantle conductivity beneath northern hemisphere continents. Izv. Phys. Solid Earth 25(3), 221–226 (1989) (in Russian)

    Google Scholar 

  • Semenov, V.Y.: Analysis of magnetotelluric data during the anisotropic media sounding. Geology Geophys. 10, 121–125 (1993) (in Russian)

    Google Scholar 

  • Semenov, V.Y.: Regional conductivity structures of the Earth’s mantle. Publications of the Institute of Geophysics, Polish Academy of Sciences, vol. C-65, issue no. (302), 122 pp (1998)

    Google Scholar 

  • Semenov, V.Y.: On the apparent resistivity in magnetotelluric sounding. Izv. Phys. Solid Earth 36(1), 99–100 (2000)

    Google Scholar 

  • Semenov, V.Y., Jozwiak, W.: Model of the geoelectrical structure of the mid- and lower mantle in the Europe-Asia region. Geophys. J. Int. 138, 549–552 (1999)

    Article  Google Scholar 

  • Semenov, V.Y., Jozwiak, W.: Estimation of the upper mantle electric conductance at the polish margin of the East European Platform. Izv. Phys. Solid Earth 41(4), 80–87 (2005)

    Google Scholar 

  • Semenov, V.Y., Jóżwiak, W.: Lateral variations of the mid-mantle conductance beneath Europe. Tectonophysics 416, 279–288 (2006)

    Article  Google Scholar 

  • Semenov, V.Y., Ladanivskyy, B.T., Nowożyński, K.: New induction sounding tested in Central Europe. Acta Geophys. 59(5), 815–832 (2011)

    Article  Google Scholar 

  • Semenov, V.Y., Ernst, T., Nowożyński, K., Pek, J., EMTESZ WG.: Estimation of the deep geoelectrical structure beneath TESZ in NW Poland. Publications of the Institute of Geophysics, Polish Academy of Sciences, vol. C-95, issue no. (386): Study of geological structures containing well-conductive complexes in Poland, pp. 63–65 (2005)

    Google Scholar 

  • Semenov, V.Y., Rodkin, M.V.: Conductivity structure of the upper mantle in an active subduction zone. J. Geodyn. 21(4), 355–364 (1996)

    Article  Google Scholar 

  • Semenov, V.Y., Shuman, V.N.: Impedances for the deep electromagnetic soundings. Acta Geophys. 58(4), 527–542 (2010)

    Article  Google Scholar 

  • Semenov, V.Y., Ádám, A., Jóźwiak, W., Ladanyvskyy, B., Logvinov, I.M., Pek, J., Pushkarev, P., Vozar, J., Experimental Team of CEMES: Electrical structure of the upper mantle beneath Central Europe: Results of the CEMES project. Acta Geophys. 56(4), 957–981 (2008)

    Article  Google Scholar 

  • Semenov, V.Y., Hvozdara, M., Vozar, J.: Modeling of deep magnetovariation soundings on the rotating Earth. Acta Geophys. 61(2), 264–280 (2013)

    Article  Google Scholar 

  • Senior, T.B.A., Volakis, J.L.: Approximate boundary conditions in electromagnetics, p. 353. IEE Press, London (1995)

    Book  Google Scholar 

  • Shuman, V.N.: Scalar local impedance conditions and the impedance tensor in processing and interpretation of a magnetotelluric experiment. Geoph. J. Kiev. 19, 361–385 (1999)

    Google Scholar 

  • Shankland, T.J., Peyronneau, J., Poirier, J.-P.: Electrical conductivity of the Earth’s lower mantle. Nature 366, 453–455 (1993)

    Article  Google Scholar 

  • Sochelnikov, V.V.: Principles of the theory of the natural electromagnetic field in a sea. Gidrometeoizdat, Leningrad (1979) (in Russian)

    Google Scholar 

  • Sokolova, E.Y., Varentsov, I.M., BEAR WorkingGroup.: Deep array electromagnetic sounding on the Baltic shield: external excitation model and implications for upper mantle conductivity studies. Tectonophysics 445, 3–25 (2007)

    Google Scholar 

  • Srivastava, S.P.: Theory of the magnetotelluric method for a spherical conductor. Geoph. J. Roy. Astr. Soc. 11, 373–387 (1966)

    Article  Google Scholar 

  • Szarka, L., Franke, A., Prácser, E., Kiss, J.: Hypothetical mid-crustal models of second-order magnetic phase transition. 4th International Symposium on Three-Dimensional Electromagnetics Freiberg, Germany, September, pp. 27–30 (2007)

    Google Scholar 

  • Tikhonov, A.N.: Determination of the electrical characteristics of the deep layers of the Earth’s crust. Dokl. AN USSR. 73, 2, 295–297 (1950) (in Russian). Transactions of the second general scientific assembly, IAGA Bull., 35. Kyoto, Japan, 1973, p. 189

    Google Scholar 

  • Transaction…: Transactions of the 2nd IAGA Scientific Assembly, Kyoto, Japan. IAGA Bull. 35, 189 pp (1973)

    Google Scholar 

  • Vanyan, L., Tezkan, B., Palshin, N.: Low electrical resistivity and seismic velocity at the base of the upper crust as indicator of rheologically weak layer. Surv. Geophys. 22, 2, 131–154, (2001). doi:10.1023/A:1012937410685

  • Vanyan, L.L., Kuznetsov, V.A., Lyubetskaya, T.V., Palshin, N.A., Korja, T., Lahti, I., BEAR Working Group.: Electrical conductivity of the crust beneath Central Lapland. Izv. Phys. Solid Earth 38(10), 798–815 (2002)

    Google Scholar 

  • Vardanyants, I.L., Kovtun, A.A.: The study of the possible existence of asthenosphere on the territory of Fennoscandian shield by the BEAR data. In the book: Complex Geological-Geophysical Models of Ancient Shields. Apatity. Edition of the Geological Institute of the Kola Science Centre of Russian Academy of Sciences, pp. 15–18 (2009)

    Google Scholar 

  • Varentsov, I. M., Engels, M., Korja, T., Smirnov, M.Y, The BEAR WG.: The generalized geoelectrical model of Fennoscandia: a challenging database for long period 3D modeling studies within Baltic electromagnetic array research (BEAR). Izv. Phys. Solid Earth 10, 64–105 (2002) (in Russian)

    Google Scholar 

  • Wait, J.R.: On the relation between telluric currents and the Earth’s magnetic field. Geophysics 19, 281–289 (1954)

    Article  Google Scholar 

  • Weidelt, P.: The inverse problem of geomagnetic induction. Geophysik. 38, 257–289 (1972)

    Google Scholar 

  • Weckmann, U.O., Ritter, O., Haak, V.: Images of the magnetotelluric apparent resistivity tensor. Geophys. J. Int. 155, 456–468 (2003). doi:10.1046/j.1365-246X.2003.02062.x

    Article  Google Scholar 

  • Woods, D.V., Lilley, F.E.M.: Geomagnetic induction in Central Australia. J. Geomagn. Geoelect. 31, 449–458 (1979)

    Article  Google Scholar 

  • Yukutake, T.: The solar cycle contribution to the secular change in the geomagnetic field. J. Geomag. Geoelectr. 17, 287–309 (1965)

    Article  Google Scholar 

  • Zhamaletdinov, A.A.: Graphite in the Earth’s crust and electrical conductivity anomalies. Izv. Phys. Solid Earth 32(4), 272–288 (1996)

    Google Scholar 

  • Zhamaletdinov, A.A.: Khibiny MHD experiment: the 30th anniversary. Izv. Phys. Solid Earth 41(9), 737–742 (2005)

    Google Scholar 

  • Zhamaletdinov, A.A.: The new data on the structure of the continental crust based on the results of electromagnetic sounding with the use of powerful controlled sources. Dokl. Earth Sci. 438(Part 2), 798–802 (2011) (in Russian)

    Google Scholar 

  • Zhamaletdinov, A.A., Shevtsov, A.N., Korotkova, T.G., Kopytenko, Y.A., Izmailov, V.S., Petrishchev, M.S., Efimov, B.V., Barannik, M.B., Kolobov, V.V., Prokopchuk, P.I., Smirnov, M.Y., Vagin, S.A., Pertel, M.I., Tereshchenko, E.D., Vasil’ev, A.N., Grigoryev, V.F., Gokhberg, M.B., Trofimchik, V.I., Yampolsky, Y.M., Koloskov, A.V., Fedorov, A.V., Korja, T.: Deep electromagnetic sounding of the lithosphere in the Eastern Baltic (Fennoscandian) shield with high power controlled sources and industrial power transmission lines (FENICS experiment). Izv. Phys. Solid Earth 47(1), 2–22 (2011)

    Google Scholar 

  • Zhamaletdinov, A.A., Petrishchev, M.S., Shevtsov, A.N., Kolobov, V.V., Selivanov, V.N., Esipko, O.A., Kopytenko, E.A., Grigorijev, V.F.: Electromagnetic sounding of the Earth’s crust in the vicinities of the SG-6 and SG-7 super-deep boreholes in the fields of natural and powerful controlled sources. Dokl. Earth Sci. 445 1, 889–893 (2012)

    Google Scholar 

  • Zharkov, V.N.: Internal Structures of the Earth and Planets. Nauka, Moscow (1983) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Semenov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Semenov, V., Petrishchev, M. (2018). Results of Deep Soundings in Europe. In: Induction Soundings of the Earth's Mantle. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-53795-5_4

Download citation

Publish with us

Policies and ethics