Skip to main content

Implementation of Evidence-Based Care in Pediatric Hematology/Oncology Practice

  • Chapter
  • First Online:
Patient Safety and Quality in Pediatric Hematology/Oncology and Stem Cell Transplantation

Abstract

Evidence-based care is ideally determined by controlled clinical trials that demonstrate superiority of one approach. Once an intervention has demonstrated efficacy, the next challenge is delivering it reliably to its defined population. In the sections that follow, we discuss five topics, handoff communication, identification and early treatment of sepsis and three approaches to disease prevention or mitigation-influenza vaccination, time to antibiotics in immune compromised patients, and iron chelation therapy for patients receiving erythrocyte transfusion. Each of these is relevant to pediatric hematology/oncology patients and providers and demonstrates how quality improvement methods lead to a higher delivery rate for evidence-based care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung L, Phillips R, Lehrnbecher T. Time for paediatric febrile neutropenia guidelines—children are not little adults. Eur J Cancer. 2011;47:811–3.

    Article  CAS  PubMed  Google Scholar 

  2. Phillips RS, Lehrnbecher T, Alexander S, Sung L. Updated systematic review and meta-analysis of the performance of risk prediction rules in children and young people with febrile neutropenia. PLoS One. 2012;7:e38300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gavidia R, Fuentes SL, Vasquez R, et al. Low socioeconomic status is associated with prolonged times to assessment and treatment, sepsis and infectious death in pediatric fever in El Salvador. PLoS One. 2012;7:e43639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCavit TL, Winick N. Time-to-antibiotic administration as a quality of care measure in children with febrile neutropenia: a survey of pediatric oncology centers. Pediatr Blood Cancer. 2012;58:303–5.

    Article  PubMed  Google Scholar 

  5. Fletcher M, Hodgkiss H, Zhang S, et al. Prompt administration of antibiotics is associated with improved outcomes in febrile neutropenia in children with cancer. Pediatr Blood Cancer. 2013;60:1299–306.

    Article  CAS  PubMed  Google Scholar 

  6. Salstrom JL, Coughlin RL, Pool K, et al. Pediatric patients who receive antibiotics for fever and neutropenia in less than 60 min have decreased intensive care needs. Pediatr Blood Cancer. 2015;62:807–15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Amado VM, Vilela GP, Queiroz A Jr, Amaral AC. Effect of a quality improvement intervention to decrease delays in antibiotic delivery in pediatric febrile neutropenia: a pilot study. J Crit Care. 2011;26:103. e9–12

    Google Scholar 

  8. Volpe D, Harrison S, Damian F, et al. Improving timeliness of antibiotic delivery for patients with fever and suspected neutropenia in a pediatric emergency department. Pediatrics. 2012;130:e201–10.

    Article  PubMed  Google Scholar 

  9. Jobson M, Sandrof M, Valeriote T, Liberty AL, Walsh-Kelly C, Jackson C. Decreasing time to antibiotics in febrile patients with central lines in the emergency department. Pediatrics. 2015;135:e187–95.

    Article  PubMed  Google Scholar 

  10. Burry E, Punnett A, Mehta A, Thull-Freedman J, Robinson L, Gupta S. Identification of educational and infrastructural barriers to prompt antibiotic delivery in febrile neutropenia: a quality improvement initiative. Pediatr Blood Cancer. 2012;59:431–5.

    Article  PubMed  Google Scholar 

  11. Cash T, Deloach T, Graham J, Shirm S, Mian A. Standardized process used in the emergency department for pediatric oncology patients with fever and neutropenia improves time to the first dose of antibiotics. Pediatr Emerg Care. 2014;30:91–3.

    Article  PubMed  Google Scholar 

  12. Cohen C, King A, Lin CP, Friedman GK, Monroe K, Kutny M. Protocol for reducing time to antibiotics in pediatric patients presenting to an emergency department with fever and neutropenia: efficacy and barriers. Pediatr Emerg Care. 2016;32(11):739–45.

    Article  PubMed  Google Scholar 

  13. Dobrasz G, Hatfield M, Jones LM, Berdis JJ, Miller EE, Entrekin MS. Nurse-driven protocols for febrile pediatric oncology patients. J Emerg Nurs. 2013;39:289–95.

    Article  PubMed  Google Scholar 

  14. Pakakasama S, Surayuthpreecha K, Pandee U, et al. Clinical practice guidelines for children with cancer presenting with fever to the emergency room. Pediatr Int. 2011;53:902–5.

    Article  PubMed  Google Scholar 

  15. Vedi A, Pennington V, O’Meara M, et al. Management of fever and neutropenia in children with cancer. Support Care Cancer. 2015;23:2079–87.

    Article  CAS  PubMed  Google Scholar 

  16. Green AL, Yi J, Bezler N, et al. A prospective cohort quality improvement study to reduce the time to antibiotics for new fever in neutropenic pediatric oncology inpatients. Pediatr Blood Cancer. 2016;63:112–7.

    Article  CAS  PubMed  Google Scholar 

  17. Dandoy CE, Hariharan S, Weiss B, et al. Sustained reductions in time to antibiotic delivery in febrile immunocompromised children: results of a quality improvement collaborative. BMJ Qual Saf. 2016;25:100–9.

    Article  PubMed  Google Scholar 

  18. Baskin MN, Goh XL, Heeney MM, Harper MB. Bacteremia risk and outpatient management of febrile patients with sickle cell disease. Pediatrics. 2013;131:1035–41.

    Article  PubMed  Google Scholar 

  19. Buchanan GR, Ballas SK, Afenyi-Annan AN, et al. Evidence-based management of sickle cell disease. U.S. Department of Health and Human Services: Washington; 2014.

    Google Scholar 

  20. Wang CJ, Kavanagh PL, Little AA, Holliman JB, Sprinz PG. Quality-of-care indicators for children with sickle cell disease. Pediatrics. 2011;128:484–93.

    PubMed  Google Scholar 

  21. Kavanagh PL, Sprinz PG, Wolfgang TL, et al. Improving the management of vaso-occlusive episodes in the pediatric emergency department. Pediatrics. 2015;136:e1016–25.

    Article  PubMed  Google Scholar 

  22. Treadwell MJ, Bell M, Leibovich SA, et al. A quality improvement initiative to improve emergency department care for pediatric patients with sickle cell disease. J Clin Outcomes Manag. 2014;21:62–70.

    PubMed  PubMed Central  Google Scholar 

  23. Goldstein B, Giroir B, Randolph A, International Consensus Conference on Pediatric S. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6:2–8.

    Article  PubMed  Google Scholar 

  24. Silverman AM. Septic shock: recognizing and managing this life-threatening condition in pediatric patients. Pediatr Emerg Med Pract. 2015;12:1–25. quiz 6–7

    PubMed  Google Scholar 

  25. Jacob JA. New sepsis diagnostic guidelines shift focus to organ dysfunction. JAMA. 2016;315:739–40.

    Article  CAS  PubMed  Google Scholar 

  26. Kleinman ME, Chameides L, Schexnayder SM, et al. Pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics. 2010;126:e1361–99.

    Article  PubMed  Google Scholar 

  27. de Caen AR, Maconochie IK, Aickin R, et al. Part 6: Pediatric basic life support and pediatric advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2015;132:S177–203.

    Article  PubMed  Google Scholar 

  28. American Heart Association. Web-based integrated guidelines for cardiopulmonary resuscitation and emergency cardiovascular care—part 12: Pediatric advanced life support. 2015. https://eccguidelines.heart.org/index.php/circulation/cpr-ecc-guidelines-2/part-12-pediatric-advanced-life-support/?strue=1&id=3-3n. Accessed April, 2016.

  29. Balamuth F, Weiss SL, Neuman MI, et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr Crit Care Med. 2014;15:798–805.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fontela P, Lacroix J. Sepsis or SEPSIS: does it make a difference? Pediatr Crit Care Med. 2014;15:893–4.

    Article  PubMed  Google Scholar 

  31. Maitland K, Kiguli S, Opoka RO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364:2483–95.

    Article  CAS  PubMed  Google Scholar 

  32. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.

    Article  PubMed  Google Scholar 

  33. Levy MM, Dellinger RP, Townsend SR, et al. The surviving sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med. 2010;38:367–74.

    Article  PubMed  Google Scholar 

  34. Cruz AT, Perry AM, Williams EA, Graf JM, Wuestner ER, Patel B. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics. 2011;127:e758–66.

    Article  PubMed  Google Scholar 

  35. Bradshaw C, Goodman I, Rosenberg R, Bandera C, Fierman A, Rudy B. Implementation of an Inpatient Pediatric Sepsis Identification Pathway. Pediatrics. 2016;137:1–8.

    Article  Google Scholar 

  36. Paul R, Melendez E, Stack A, Capraro A, Monuteaux M, Neuman MI. Improving adherence to PALS septic shock guidelines. Pediatrics. 2014;133:e1358–66.

    Article  PubMed  Google Scholar 

  37. Children’s Hospital Association. Join the fight against pediatric sepsis with new collaborative. 2016.

    Google Scholar 

  38. Healthcare JCCfT. Facts about the hand-off communications project. The Joint Commission; 2016.

    Google Scholar 

  39. Arora V, Johnson J. A model for building a standardized hand-off protocol. Jt Comm J Qual Patient Saf. 2006;32:646–55.

    Article  PubMed  Google Scholar 

  40. The Joint Commission. Handoff Communications: Toolkit for Implementing the National Patient Safety Goal. Oakbrook Terrace, IL. Joint Commission Resources, 2008.

    Google Scholar 

  41. Starmer AJ, Sectish TC, Simon DW, et al. Rates of medical errors and preventable adverse events among hospitalized children following implementation of a resident handoff bundle. JAMA. 2013;310:2262–70.

    Article  CAS  PubMed  Google Scholar 

  42. Philibbert I, Taradejna C. A brief history of duty hours and resident education. In: The ACGME 2011 Duty Hour Standards: Enhancing quality of care, supervision and resident professional development. Chicago, IL: Accreditation Counciel for Graduate Medical Education; 2011.

    Google Scholar 

  43. Accreditation Council for Graduate Medical Education. Common program requirements. Chicago: Accreditation Council for Graduate Medical Education; 2016.

    Google Scholar 

  44. Smith D, Burris JW, Mahmoud G, Guldner G. Residents’ self-perceived errors in transitions of care in the emergency department. J Grad Med Educ. 2011;3:37–40.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Greenberg CC, Regenbogen SE, Studdert DM, et al. Patterns of communication breakdowns resulting in injury to surgical patients. J Am Coll Surg. 2007;204:533–40.

    Article  PubMed  Google Scholar 

  46. Horwitz LI, Krumholz HM, Green ML, Huot SJ. Transfers of patient care between house staff on internal medicine wards: a national survey. Arch Intern Med. 2006;166:1173–7.

    Article  PubMed  Google Scholar 

  47. Arora V, Johnson J, Lovinger D, Humphrey HJ, Meltzer DO. Communication failures in patient sign-out and suggestions for improvement: a critical incident analysis. Qual Saf Health Care. 2005;14:401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nasca TJ, Day SH, Amis Jr ES, Force ADHT. The new recommendations on duty hours from the ACGME Task Force. N Engl J Med. 2010;363:e3.

    Article  PubMed  Google Scholar 

  49. Chang VY, Arora VM, Lev-Ari S, D’Arcy M, Keysar B. Interns overestimate the effectiveness of their hand-off communication. Pediatrics. 2010;125:491–6.

    Article  PubMed  Google Scholar 

  50. Britt RC, Ramirez DE, Anderson-Montoya BL, Scerbo MW. Resident handoff training: initial evaluation of a novel method. J Healthc Qual. 2015;37:75–80.

    Article  PubMed  Google Scholar 

  51. The Joint Commission Sentinel event data root causes by event type 2004–2013. 2013.

    Google Scholar 

  52. Riesenberg LA, Berg K, Berg D, et al. Resident and attending physician perception of maladaptive response to stress in residents. Med Educ Online. 2014;19:25041.

    Article  Google Scholar 

  53. Abraham J, Kannampallil T, Patel VL. A systematic review of the literature on the evaluation of handoff tools: implications for research and practice. J Am Med Inform Assoc. 2014;21:154–62.

    Article  PubMed  Google Scholar 

  54. Starmer AJ, Spector ND, Srivastava R, et al. I-pass, a mnemonic to standardize verbal handoffs. Pediatrics. 2012;129:201–4.

    Article  PubMed  Google Scholar 

  55. Cockburn A. Communicating, cooperating teams. Humans and Technology; 2013.

    Google Scholar 

  56. Patterson ES, Wears RL. Patient handoffs: standardized and reliable measurement tools remain elusive. Jt Comm J Qual Patient Saf. 2010;36:52–61.

    Article  PubMed  Google Scholar 

  57. Gill PJ, Ashdown HF, Wang K, et al. Identification of children at risk of influenza-related complications in primary and ambulatory care: a systematic review and meta-analysis. Lancet Respir Med. 2015;3:139–49.

    Article  PubMed  Google Scholar 

  58. Kersun LS, Reilly AF, Coffin SE, Sullivan KE. Protecting pediatric oncology patients from influenza. Oncologist. 2013;18:204–11.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tasian SK, Park JR, Martin ET, Englund JA. Influenza-associated morbidity in children with cancer. Pediatr Blood Cancer. 2008;50:983–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kersun LS, Coffin SE, Leckerman KH, Ingram M, Reilly AF. Community acquired influenza requiring hospitalization: vaccine status is unrelated to morbidity in children with cancer. Pediatr Blood Cancer. 2010;54:79–82.

    Article  PubMed  Google Scholar 

  61. Mavinkurve-Groothuis AM, van der Flier M, Stelma F, van Leer-Buter C, Preijers FW, Hoogerbrugge PM. Absolute lymphocyte count predicts the response to new influenza virus H1N1 vaccination in pediatric cancer patients. Clin Vaccine Immunol. 2013;20:118–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leahy TR, Smith OP, Bacon CL, et al. Does vaccine dose predict response to the monovalent pandemic H1N1 influenza a vaccine in children with acute lymphoblastic leukemia? A single-centre study. Pediatr Blood Cancer. 2013;60:1656–61.

    Article  CAS  PubMed  Google Scholar 

  63. Chisholm JC, Devine T, Charlett A, Pinkerton CR, Zambon M. Response to influenza immunisation during treatment for cancer. Arch Dis Child. 2001;84:496–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ojha RP, Offutt-Powell TN, Gurney JG. Influenza vaccination coverage among adult survivors of pediatric cancer. Am J Prev Med. 2014;46:552–8.

    Article  PubMed  Google Scholar 

  65. Freedman JL, Reilly AF, Powell SC, Bailey LC. Quality improvement initiative to increase influenza vaccination in pediatric cancer patients. Pediatrics. 2015;135:e540–6.

    Article  PubMed  Google Scholar 

  66. Bundy DG, Strouse JJ, Casella JF, Miller MR. Burden of influenza-related hospitalizations among children with sickle cell disease. Pediatrics. 2010;125:234–43.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Strouse JJ, Reller ME, Bundy DG, et al. Severe pandemic H1N1 and seasonal influenza in children and young adults with sickle cell disease. Blood. 2010;116:3431–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Purohit S, Alvarez O, O’Brien R, Andreansky S. Durable immune response to inactivated H1N1 vaccine is less likely in children with sickle cell anemia receiving chronic transfusions. Pediatr Blood Cancer. 2012;59:1280–3.

    Article  PubMed  Google Scholar 

  69. Long CB, Ramos I, Rastogi D, et al. Humoral and cell-mediated immune responses to monovalent 2009 influenza A/H1N1 and seasonal trivalent influenza vaccines in high-risk children. J Pediatr. 2012;160:74–81.

    Article  CAS  PubMed  Google Scholar 

  70. Hakim H, Allison KJ, Van De Velde LA, Li Y, Flynn PM, McCullers JA. Immunogenicity and safety of inactivated monovalent 2009 H1N1 influenza A vaccine in immunocompromised children and young adults. Vaccine. 2012;30:879–85.

    Article  CAS  PubMed  Google Scholar 

  71. Souza AR, Braga JA, de Paiva TM, Loggetto SR, Azevedo RS, Weckx LY. Immunogenicity and tolerability of a virosome influenza vaccine compared to split influenza vaccine in patients with sickle cell anemia. Vaccine. 2010;28:1117–20.

    Article  CAS  PubMed  Google Scholar 

  72. Hambidge SJ, Ross C, Glanz J, et al. Trivalent inactivated influenza vaccine is not associated with sickle cell crises in children. Pediatrics. 2012;129:e54–9.

    Article  PubMed  Google Scholar 

  73. Howard-Jones M, Randall L, Bailey-Squire B, Clayton J, Jackson N. An audit of immunisation status of sickle cell patients in Coventry, UK. J Clin Pathol. 2009;62:42–5.

    Article  CAS  PubMed  Google Scholar 

  74. Beverung LM, Brousseau D, Hoffmann RG, Yan K, Panepinto JA. Ambulatory quality indicators to prevent infection in sickle cell disease. Am J Hematol. 2014;89:256–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rickert D, Santoli J, Shefer A, Myrick A, Yusuf H. Influenza vaccination of high-risk children: what the providers say. Am J Prev Med. 2006;30:111–8.

    Article  PubMed  Google Scholar 

  76. Ledwich LJ, Harrington TM, Ayoub WT, Sartorius JA, Newman ED. Improved influenza and pneumococcal vaccination in rheumatology patients taking immunosuppressants using an electronic health record best practice alert. Arthritis Rheum. 2009;61:1505–10.

    Article  PubMed  Google Scholar 

  77. Bundy DG, Muschelli J, Clemens GD, et al. Preventive care delivery to young children with sickle cell disease. J Pediatr Hematol Oncol. 2016;38(4):294–300.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zimmerman RK, Hoberman A, Nowalk MP, et al. Improving influenza vaccination rates of high-risk inner-city children over 2 intervention years. Ann Fam Med. 2006;4:534–40.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sobota AE, Kavanagh PL, Adams WG, McClure E, Farrell D, Sprinz PG. Improvement in influenza vaccination rates in a pediatric sickle cell disease clinic. Pediatr Blood Cancer. 2015;62:654–7.

    Article  PubMed  Google Scholar 

  80. Kim A, Nemeth E. New insights into iron regulation and erythropoiesis. Curr Opin Hematol. 2015;22:199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Quinn CT, St Pierre TG. MRI measurements of iron load in transfusion-dependent patients: implementation, challenges, and pitfalls. Pediatr Blood Cancer. 2016;63:773–80.

    Article  CAS  PubMed  Google Scholar 

  82. Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93:1721–41.

    Article  CAS  PubMed  Google Scholar 

  83. Heeney MM. Iron clad: iron homeostasis and the diagnosis of hereditary iron overload. Hematology Am Soc Hematol Educ Program. 2014;2014:202–9.

    PubMed  Google Scholar 

  84. Hoffbrand AV, Taher A, Cappellini MD. How I treat transfusional iron overload. Blood. 2012;120:3657–69.

    Article  CAS  PubMed  Google Scholar 

  85. Amid A, Saliba AN, Taher AT, Klaassen RJ. Thalassaemia in children: from quality of care to quality of life. Arch Dis Child. 2015;100:1051–7.

    Article  PubMed  Google Scholar 

  86. Marsella M, Borgna-Pignatti C. Transfusional iron overload and iron chelation therapy in thalassemia major and sickle cell disease. Hematol Oncol Clin North Am. 2014;28:703–27. vi

    Article  PubMed  Google Scholar 

  87. de Alarcon PA, Donovan ME, Forbes GB, Landaw SA, Stockman JA 3rd. Iron absorption in the thalassemia syndromes and its inhibition by tea. N Engl J Med. 1979;300:5–8.

    Google Scholar 

  88. Fasano RM, Leong T, Kaushal M, Sagiv E, Luban NL, Meier ER. Effectiveness of red blood cell exchange, partial manual exchange, and simple transfusion concurrently with iron chelation therapy in reducing iron overload in chronically transfused sickle cell anemia patients. Transfusion. 2016;56(7):1707–15.

    Article  CAS  PubMed  Google Scholar 

  89. Nelson SC, Hennessy JM, McDonough EA, Guck KL. Weekend very high-dose intravenous deferoxamine in children with transfusional iron overload. J Pediatr Hematol Oncol. 2006;28:182–5.

    Article  PubMed  Google Scholar 

  90. Olivieri NF. Adherence to deferoxamine therapy: heeding Hippocrates and Osler. Am J Hematol. 2004;76:415–6.

    Article  PubMed  Google Scholar 

  91. Pennell DJ, Berdoukas V, Karagiorga M, et al. Randomized controlled trial of deferiprone or deferoxamine in beta-thalassemia major patients with asymptomatic myocardial siderosis. Blood. 2006;107:3738–44.

    Article  CAS  PubMed  Google Scholar 

  92. Fisher SA, Brunskill SJ, Doree C, Chowdhury O, Gooding S, Roberts DJ. Oral deferiprone for iron chelation in people with thalassaemia. Cochrane Database Syst Rev. 2013;8:CD004839.

    Google Scholar 

  93. Fisher SA, Brunskill SJ, Doree C, Gooding S, Chowdhury O, Roberts DJ. Desferrioxamine mesylate for managing transfusional iron overload in people with transfusion-dependent thalassaemia. Cochrane Database Syst Rev. 2013;8:CD004450.

    Google Scholar 

  94. Delea TE, Edelsberg J, Sofrygin O, et al. Consequences and costs of noncompliance with iron chelation therapy in patients with transfusion-dependent thalassemia: a literature review. Transfusion. 2007;47:1919–29.

    Article  CAS  PubMed  Google Scholar 

  95. Brittenham GM, Griffith PM, Nienhuis AW, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med. 1994;331:567–73.

    Article  CAS  PubMed  Google Scholar 

  96. Ward A, Caro JJ, Green TC, et al. An international survey of patients with thalassemia major and their views about sustaining life-long desferrioxamine use. BMC Clin Pharmacol. 2002;2:3.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hoffbrand AV, Cohen A, Hershko C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood. 2003;102:17–24.

    Article  CAS  PubMed  Google Scholar 

  98. Haghpanah S, Zarei T, Zahedi Z, Karimi M. Compliance and satisfaction with deferasirox (Exjade(R)) compared with deferoxamine in patients with transfusion-dependent beta-thalassemia. Hematology (Amsterdam, Netherlands). 2014;19:187–91.

    CAS  Google Scholar 

  99. Trachtenberg FL, Gerstenberger E, Xu Y, et al. Relationship among chelator adherence, change in chelators, and quality of life in thalassemia. Qual Life Res. 2014;23:2277–88.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Jordan LB, Vekeman F, Sengupta A, Corral M, Guo A, Duh MS. Persistence and compliance of deferoxamine versus deferasirox in Medicaid patients with sickle-cell disease. J Clin Pharm Ther. 2012;37:173–81.

    Article  CAS  PubMed  Google Scholar 

  101. Origa R, Danjou F, Cossa S, et al. Impact of heart magnetic resonance imaging on chelation choices, compliance with treatment and risk of heart disease in patients with thalassaemia major. Br J Haematol. 2013;163:400–3.

    Article  CAS  PubMed  Google Scholar 

  102. Pakbaz Z, Fischer R, Treadwell M, et al. A simple model to assess and improve adherence to iron chelation therapy with deferoxamine in patients with thalassemia. Ann N Y Acad Sci. 2005;1054:486–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Werner MD, MMM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Werner, E.J., Ramirez, D.E. (2017). Implementation of Evidence-Based Care in Pediatric Hematology/Oncology Practice. In: Dandoy, C., Hilden, J., Billett, A., Mueller, B. (eds) Patient Safety and Quality in Pediatric Hematology/Oncology and Stem Cell Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-53790-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53790-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53788-7

  • Online ISBN: 978-3-319-53790-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics