Skip to main content

Autophagy in Liver Homeostasis

  • Chapter
  • First Online:
Cellular Injury in Liver Diseases

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

  • 836 Accesses

Abstract

Autophagy is an intracellular lysosome-mediated cellular degradation process. Dysfunction of autophagy in liver has been recently shown to directly impact liver physiology and cause different liver diseases, suggesting its important role in maintaining liver homeostasis. Autophagy regulates liver function by bulk or selective degradation and by recycling of different cellular nutrients to maintain energy homeostasis. It also regulates the number, quality, and dynamics of different subcellular organelles such as mitochondria, endoplasmic reticulum, and peroxisomes under normal and pathophysiological conditions. Moreover, autophagy alters the level of metabolic enzymes and signaling molecules, hence having an overall impact on cell metabolism and signaling pathway. Autophagy also seems to play a vital role in maintaining genomic integrity. Mechanistic details on the diverse roles of autophagy are being revealed. Going forward, these studies will provide new insights on how autophagy functions could be modulated in pathophysiological conditions of liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFLD:

Alcoholic fatty liver disease

AMPK:

AMP-activated protein kinase

ASH:

Alcoholic steatohepatitis

ATF4:

Activating transcription factor 4

ATG:

Autophagy-related

ATZ:

Alpha-1-antitrypsin Z

AUP1:

Ancient ubiquitous protein 1

BA:

Bile acid

BAR:

Bile acid-activated nuclear receptor

CARM1:

Coactivator-associated arginine methyl transferase

CBZ:

Carbamazepine

CMA:

Chaperonin-Mediated Autophagy

CREB:

cAMP response element-binding protein

DDR:

DNA damage response

DFCP1:

Zinc finger FYVE domain-containing protein1

DR1:

Direct repeat 1

Dyn2:

Dynamin 2

ER:

Endoplasmic reticulum

ERAD:

ER-associated degradation

ERQC:

Endoplasmic reticulum quality control

FA:

Fatty acid

FGF21:

Fibroblast growth factor 21

FIP200:

FAK Family Kinase-Interacting Protein of 200 kDa

FOXO3a:

Fork head box O 3a

HIF2α:

Hypoxia inducible factor 2α

HSL:

Hormone-sensitive lipase

IR:

Ionizing radiation

KFERQ:

Lysine-phenylalanine-Glutamic acid-Arginine-Glutamine

LAMP-2A:

Lysosome-associated membrane protein type-2A

LD:

Lipid droplet

MDB:

Mallory–Denk bodies

MGL:

Monoacylglycerol lipase

mTORC1:

Mammalian target of rapamycin complex 1

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NBR1:

Neighbor of BRCA1 gene 1

NDP52:

Nuclear domain 10 protein 52 kDa

NPC1L1:

Niemann-Pick-Type C1-Like1

OPTN:

Optineurin

PE:

Phosphatidylethanolamine

PLIN:

Perilipin

PMP:

Peroxisome membrane proteins

ROS:

Reactive oxygen species

SKP2:

S-phase kinase-associated protein 2

TFEB:

Transcription factor EB

TSC2:

Tuberous sclerosis 2

Ube2g2:

E2 ubiquitin conjugases

ULK1:

Unc-51 Like Autophagy-Activating Kinase 1

UVRAG:

UV Radiation Resistance-Associated Gene

References

  • Amir M, Czaja MJ (2011) Autophagy in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 5(2):159–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ (2001) Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276(31):28857–28865

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3):707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Yu L (2013) Autophagic lysosome reformation. Exp Cell Res 319(2):142–146

    Article  CAS  PubMed  Google Scholar 

  • Cheong H, Lindsten T, Wu J, Lu C, Thompson CB (2011) Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci U S A 108(27):11121–11126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL (2002) Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem 277(8):6344–6352

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24(1):92–104

    Article  CAS  PubMed  Google Scholar 

  • Czaja MJ, Ding WX, Donohue TM Jr, Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH, Perlmutter DH, Randall G, Ray RB, Tsung A, Yin XM (2013) Functions of autophagy in normal and diseased liver. Autophagy 9(8):1131–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding WX, Yin XM (2008) Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4(2):141–150

    Article  CAS  PubMed  Google Scholar 

  • Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn GW, Yin XM (2010) Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem 285(36):27879–27890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont N, Chauhan S, Arko-Mensah J, Castillo EF, Masedunskas A, Weigert R, Robenek H, Proikas-Cezanne T, Deretic V (2014) Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 24(6):609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efeyan A, Comb WC, Sabatini DM (2015) Nutrient-sensing mechanisms and pathways. Nature 517(7534):302–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiyama A, Okamoto K (2015) PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 33:95–101

    Article  CAS  PubMed  Google Scholar 

  • Eng CH, Yu K, Lucas J, White E, Abraham RT (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 3(119):ra31

    Article  PubMed  Google Scholar 

  • Evans RM, Mangelsdorf DJ (2014) Nuclear Receptors, RXR, and the Big Bang. Cell 157(1):255–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezaki J, Matsumoto N, Takeda-Ezaki M, Komatsu M, Takahashi K, Hiraoka Y, Taka H, Fujimura T, Takehana K, Yoshida M, Iwata J, Tanida I, Furuya N, Zheng DM, Tada N, Tanaka K, Kominami E, Ueno T (2011) Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7(7):727–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Nassiri A, Zhong Q (2011) Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci U S A 108(19):7769–7774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Yao Z, Klionsky DJ (2015) How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 25(6):354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipe A, McLauchlan J (2015) Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med 21(1):34–42

    Article  CAS  PubMed  Google Scholar 

  • Harada M, Hanada S, Toivola DM, Ghori N, Omary MB (2008) Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology 47(6):2026–2035

    Article  CAS  PubMed  Google Scholar 

  • He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maurice N, Mukherjee A, Goldbach C, Watkins S, Michalopoulos G, Perlmutter DH (2010) An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 329(5988):229–232

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Lam GY, Brumell JH (2011) Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 14(11):2215–2231

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J, Liu W (2015) Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 57(3):456–466

    Article  CAS  PubMed  Google Scholar 

  • Jaber N, Dou Z, Chen JS, Catanzaro J, Jiang YP, Ballou LM, Selinger E, Ouyang X, Lin RZ, Zhang J, Zong WX (2012) Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci U S A 109(6):2003–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuragi Y, Ichimura Y, Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282(24):4672–4678

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16(8):461–472

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Cuervo AM (2015) Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 17(6):759–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khambu B, Uesugi M, Kawazoe Y (2011) Translational repression stabilizes messenger RNA of autophagy-related genes. Genes Cells 16(8):857–867

    Article  CAS  PubMed  Google Scholar 

  • Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, Liebmann L, Stolz A, Nietzsche S, Koch N, Mauthe M, Katona I, Qualmann B, Weis J, Reggiori F, Kurth I, Hubner CA, Dikic I (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522(7556):354–358

    Article  CAS  PubMed  Google Scholar 

  • Khor VK, Shen WJ, Kraemer FB (2013) Lipid droplet metabolism. Curr Opin Clin Nutr Metab Care 16(6):632–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125(1):25–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Lee MS (2014) Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol 10(6):322–337

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim DH, Hur KY, Kim HK, Ko T, Han J, Kim HL, Kim J, Back SH, Komatsu M, Chen H, Chan DC, Konishi M, Itoh N, Choi CS, Lee MS (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51(3):468–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga H, Kaushik S, Cuervo AM (2010) Altered lipid content inhibits autophagic vesicular fusion. FASEB J 24(8):3052–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169(3):425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotoulas OB, Kalamidas SA, Kondomerkos DJ (2006) Glycogen autophagy in glucose homeostasis. Pathol Res Pract 202(9):631–638

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14(12):759–774

    Article  CAS  PubMed  Google Scholar 

  • Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L, Finkel T (2012) Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336(6078):225–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, Moore DD (2014) Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516(7529):112–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Chiang JY (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 66(4):948–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WW, Li J, Bao JK (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69(7):1125–1136

    Article  CAS  PubMed  Google Scholar 

  • Lin CW, Zhang H, Li M, Xiong X, Chen X, Chen X, Dong XC, Yin XM (2013) Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol 58(5):993–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipatova Z, Segev N (2014) Ypt/Rab GTPases regulate two intersections of the secretory and the endosomal/lysosomal pathways. Cell Logist 4(3):e954870

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipatova Z, Segev N (2015) A role for macro-ER-phagy in ER quality control. PLoS Genet 11(7):e1005390

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipatova Z, Shah AH, Kim JJ, Mulholland JW, Segev N (2013) Regulation of ER-phagy by a Ypt/Rab GTPase module. Mol Biol Cell 24(19):3133–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madrigal-Matute J, Cuervo AM (2016) Regulation of liver metabolism by autophagy. Gastroenterology 150(2):328–339

    Article  CAS  PubMed  Google Scholar 

  • Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471

    Article  CAS  PubMed  Google Scholar 

  • Manjithaya R, Nazarko TY, Farre JC, Subramani S (2010) Molecular mechanism and physiological role of pexophagy. FEBS Lett 584(7):1367–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manley S, Ni HM, Kong B, Apte U, Guo G, Ding WX (2014) Suppression of autophagic flux by bile acids in hepatocytes. Toxicol Sci 137(2):478–490

    Article  CAS  PubMed  Google Scholar 

  • Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8(6):903–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, Menissier de Murcia J, Almendros A, Ruiz de Almodovar M, Oliver FJ (2009) PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5(1):61–74

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10(7):458–467

    Article  CAS  PubMed  Google Scholar 

  • Nath S, Dancourt J, Shteyn V, Puente G, Fong WM, Nag S, Bewersdorf J, Yamamoto A, Antonny B, Melia TJ (2014) Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat Cell Biol 16(5):415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus A, Kooshapur H, Wolf J, Meyer NH, Madl T, Saidowsky J, Hambruch E, Lazam A, Jung M, Sattler M, Schliebs W, Erdmann R (2014) A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes. J Biol Chem 289(1):437–448

    Article  CAS  PubMed  Google Scholar 

  • Ni HM, Woolbright BL, Williams J, Copple B, Cui W, Luyendyk JP, Jaeschke H, Ding WX (2014) Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J Hepatol 61(3):617–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordgren M, Wang B, Apanasets O, Fransen M (2013) Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front Physiol 4:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamoto K (2014) Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205(4):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rourke EJ, Ruvkun G (2013) MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15(6):668–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastore N, Ballabio A, Brunetti-Pierri N (2013) Autophagy master regulator TFEB induces clearance of toxic SERPINA1/alpha-1-antitrypsin polymers. Autophagy 9(7):1094–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puls F, Goldschmidt I, Bantel H, Agne C, Brocker V, Dammrich M, Lehmann U, Berrang J, Pfister ED, Kreipe HH, Baumann U (2013) Autophagy-enhancing drug carbamazepine diminishes hepatocellular death in fibrinogen storage disease. J Hepatol 59(3):626–630

    Article  CAS  PubMed  Google Scholar 

  • Puri P, Chandra A (2014) Autophagy modulation as a potential therapeutic target for liver diseases. J Clin Exp Hepatol 4(1):51–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogov V, Dotsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20(2):126–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JL, Suh Y, Cuervo AM (2014) Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab 20(3):417–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder B, Schulze RJ, Weller SG, Sletten AC, Casey CA, McNiven MA (2015) The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61(6):1896–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuck S, Gallagher CM, Walter P (2014) ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci 127(Pt 18):4078–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze RJ, Weller SG, Schroeder B, Krueger EW, Chi S, Casey CA, McNiven MA (2013) Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J Cell Biol 203(2):315–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz AL, Brandt RA, Geuze H, Ciechanover A (1992) Stress-induced alterations in autophagic pathway: relationship to ubiquitin system. Am J Phys 262(4 Pt 1):C1031–C1038

    CAS  Google Scholar 

  • Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE (2011) FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 286(9):7468–7478

    Article  CAS  PubMed  Google Scholar 

  • Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma J, Kemper B, Kemper JK (2014) Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 516(7529):108–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332(6036):1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ, Wollenberg AC, Di Bernardo D, Chan L, Irazoqui JE, Ballabio A (2013a) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15(6):647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Fraldi A, Medina DL, Ballabio A (2013b) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14(5):283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata M, Yoshimura K, Furuya N, Koike M, Ueno T, Komatsu M, Arai H, Tanaka K, Kominami E, Uchiyama Y (2009) The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem Biophys Res Commun 382(2):419–423

    Article  CAS  PubMed  Google Scholar 

  • Shin HJ, Kim H, Oh S, Lee JG, Kee M, Ko HJ, Kweon MN, Won KJ, Baek SH (2016) AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534(7608):553–557

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spandl J, Lohmann D, Kuerschner L, Moessinger C, Thiele C (2011) Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J Biol Chem 286(7):5599–5606

    Article  CAS  PubMed  Google Scholar 

  • Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16(6):495–501

    Article  CAS  PubMed  Google Scholar 

  • Strnad R, Zatloukal K, Stumptner C, Kulaksiz H, Denk H (2008) Mallory-Denk-bodies: lessons from keratin-containing hepatic inclusion bodies. Biochim Biophys Acta 1782(12):764–774

    Article  CAS  PubMed  Google Scholar 

  • Subramani S (2015) A mammalian pexophagy target. Nat Cell Biol 17(11):1371–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi A, Kume S, Kondo M, Nakazawa J, Chin-Kanasaki M, Araki H, Araki S, Koya D, Haneda M, Chano T, Matsusaka T, Nagao K, Adachi Y, Chan L, Maegawa H, Uzu T (2016) Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation. Sci Rep 6:18944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25(8):795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter KM, Schonenberger MJ, Trotzmuller M, Horn M, Elsasser HP, Moser AB, Lucas MS, Schwarz T, Gerber PA, Faust PL, Moch H, Kofeler HC, Krek W, Kovacs WJ (2014) Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab 20(5):882–897

    Article  CAS  PubMed  Google Scholar 

  • Wang HJ, Park JY, Kwon O, Choe EY, Kim CH, Hur KY, Lee MS, Yun M, Cha BS, Kim YB, Lee H, Kang ES (2015) Chronic HMGCR/HMG-CoA reductase inhibitor treatment contributes to dysglycemia by upregulating hepatic gluconeogenesis through autophagy induction. Autophagy 11(11):2089–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Liu L, Chen Q (2015) Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim Biophys Acta 1853(10 Pt B):2784–2790

    Article  CAS  PubMed  Google Scholar 

  • Yamamura T, Ohsaki Y, Suzuki M, Shinohara Y, Tatematsu T, Cheng J, Okada M, Ohmiya N, Hirooka Y, Goto H, Fujimoto T (2014) Inhibition of Niemann-Pick-type C1-like1 by ezetimibe activates autophagy in human hepatocytes and reduces mutant alpha 1-antitrypsin Z deposition. Hepatology 59(4):1591–1599

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Ni HM, Guo F, Ding Y, Shi YH, Lahiri P, Frohlich LF, Rulicke T, Smole C, Schmidt VC, Zatloukal K, Cui Y, Komatsu M, Fan J, Ding WX (2016) Sequestosome-1/p62 is associated with autophagic removal of excess hepatic endoplasmic reticulum in mice. J Biol Chem 291(36):18663–18674

    Article  CAS  PubMed  Google Scholar 

  • Yin XM, Ding WX, Gao W (2008) Autophagy in the liver. Hepatology 47(5):1773–1785

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, Hailey DW, Oorschot V, Klumperman J, Baehrecke EH, Lenardo MJ (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465(7300):942–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, Cadrin M, Omary MB (2007) From Mallory to Mallory-Denk bodies: what, how and why? Exp Cell Res 313(10):2033–2049

    Article  CAS  PubMed  Google Scholar 

  • Zhang J (2013) Autophagy and mitophagy in cellular damage control. Redox Biol 1(1):19–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483

    Article  CAS  PubMed  Google Scholar 

  • Zirin J, Nieuwenhuis J, Perrimon N (2013) Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol 11(11):e1001708

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khambu, B., Huda, N., Zhou, J., Yan, S., Yin, XM. (2017). Autophagy in Liver Homeostasis. In: Ding, WX., Yin, XM. (eds) Cellular Injury in Liver Diseases. Cell Death in Biology and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-53774-0_9

Download citation

Publish with us

Policies and ethics