Skip to main content

Hepatocyte Lethal and Nonlethal Lipotoxic Injury

  • Chapter
  • First Online:
Cellular Injury in Liver Diseases

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

Hepatocyte injury caused by accumulation of excess lipid intermediates, known as hepatocyte lipotoxicity, is intricately linked to the pathogenesis of obesity-associated nonalcoholic steatohepatitis (NASH). Although both hepatocyte cell injury and inflammation occur in this disease process, the cellular and molecular mechanisms linking hepatocyte injury to inflammation remain unclear. Although multiple cell types contribute to hepatic inflammation in NASH, the predominant cell types appear to be macrophages. In this review, we discuss lipid-induced apoptosis and sublethal signaling events described in lipid-loaded hepatocytes, and how they promote macrophage-associated inflammation. The saturated free fatty acid palmitate and its derivative lysophosphatidylcholine activate cellular apoptotic pathways by upregulating the proapoptotic proteins, including BH3-only protein PUMA and the death receptor TRAIL-R2, which cooperatively promote lipoapoptosis. Hepatocyte apoptosis may contribute to hepatic inflammation and fibrosis via generation of apoptotic bodies. These apoptotic bodies are engulfed by macrophages and stellate cells promoting liver inflammation and fibrosis, respectively. However, recent studies also suggest that proapoptotic, but nonlethal, signaling in hepatocytes leads to the release of extracellular vesicles, which promote hepatic inflammation by inducing macrophage chemotaxis and activation. The vesicle cargo promoting these macrophage processes includes CXCL10, TRAIL, and sphingosine 1-phosphate. Thus, we discuss the possible relative contributions of both hepatocyte apoptotic cell death and nonlethal proapoptotic signaling in generating macrophage-driven hepatic inflammation during NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAD:

Caspase-activated DNase

CHOP:

CAAT/enhancer binding homologous protein

CXCL10:

Chemokine (C-X-C motif) ligand 10

DAMP:

Damage-associated molecular pattern

ER:

Endoplasmic reticulum

EV:

Extracellular vesicle

IRE1α:

Inositol-requiring enzyme-1α

JNK:

c-Jun N-terminal kinase

LPC:

Lysophosphatidylcholine

MLK3:

Mixed lineage kinase 3

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

ROCK1:

Rho-associated, coiled-coil-containing protein kinase 1

TGFβ:

Transforming growth factor β

TNFR1:

Tumor necrosis factor receptor 1

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TRAIL-R:

Tumor necrosis factor related apoptosis inducing ligand receptor

References

  • Anstee QM, Concas D, Kudo H, Levene A, Pollard J, Charlton P et al (2010) Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J Hepatol 53(3):542–550. doi:10.1016/j.jhep.2010.03.016. [Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  Google Scholar 

  • Barreyro FJ, Holod S, Finocchietto PV, Camino AM, Aquino JB, Avagnina A et al (2014) The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. doi:10.1111/liv.12570

    PubMed  Google Scholar 

  • Barreyro FJ, Kobayashi S, Bronk SF, Werneburg NW, Malhi H, Gores GJ (2007) Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis. J Biol Chem 282(37):27141–27154. doi:10.1074/jbc.M704391200. M704391200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Canbay A, Feldstein AE, Higuchi H, Werneburg N, Grambihler A, Bronk SF et al (2003a) Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38((5)):1188–1198. doi:10.1053/jhep.2003.50472. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S]

    Article  CAS  PubMed  Google Scholar 

  • Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ (2003b) Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 83((5)):655–663. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]

    Article  CAS  PubMed  Google Scholar 

  • Cazanave SC, Elmi NA, Akazawa Y, Bronk SF, Mott JL, Gores GJ (2010) CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am Journal Physiol Gastrointest liver physiol 299((1)):G236–G243. doi:10.1152/ajpgi.00091.2010. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]

    Article  CAS  Google Scholar 

  • Cazanave SC, Mott JL, Bronk SF, Werneburg NW, Fingas CD, Meng XW et al (2011) Death receptor 5 signaling promotes hepatocyte lipoapoptosis. J Biol Chem 286(45):39336–39348. doi:10.1074/jbc.M111.280420. M111.280420 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazanave SC, Mott JL, Elmi NA, Bronk SF, Werneburg NW, Akazawa Y et al (2009) JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem 284(39):26591–26602. doi:10.1074/jbc.M109.022491. M109.022491 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Almeida IT, Cortez-Pinto H, Fidalgo G, Rodrigues D, Camilo ME (2002) Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin Nutr 21(3):219–223. [Research Support, Non-U.S. Gov't]

    Article  PubMed  Google Scholar 

  • Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD et al (2003a) Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125(2):437–443. doi:S0016508503009077 [pii]

    Article  PubMed  Google Scholar 

  • Feldstein AE, Canbay A, Guicciardi ME, Higuchi H, Bronk SF, Gores GJ (2003b) Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J Hepatol 39(6):978–983. doi:S0168827803004604 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R et al (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40(1):185–194. doi:10.1002/hep.20283. [Research Support, Non U.S. Gov't Research Support, U.S. Gov't, P.H.S.].

  • Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758. doi:10.1016/j.cell.2011.10.033. [Research Support, Non-U.S. Gov't Review]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang D, Liu D, Liu M, Ge Y, Jiang M et al (2015) Tumor necrosis factor-related apoptosis-inducing ligand induces the expression of proinflammatory cytokines in macrophages and re-educates tumor-associated macrophages to an antitumor phenotype. Mol Biol Cell 26(18):3178–3189. doi:10.1091/mbc.E15-04-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23(6):1625–1637. doi:10.1096/fj.08-111005. [Research Support, N.I.H., Extramural Research Support, Non U.S. Gov't Review]

  • Han MS, Park SY, Shinzawa K, Kim S, Chung KW, Lee JH et al (2008) Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. J Lipid Res 49(1):84–97. doi:10.1194/jlr.M700184-JLR200. [Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  Google Scholar 

  • Hartl D, Krauss-Etschmann S, Koller B, Hordijk PL, Kuijpers TW, Hoffmann F et al (2008) Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J Immunol 181(11):8053–8067

    Article  CAS  PubMed  Google Scholar 

  • Hirsova P, Ibrahim SH, Bronk SF, Yagita H, Gores GJ (2013) Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis. PLoS One 8(7):e70599. doi:10.1371/journal.pone.0070599. [Research Support, N.I.H., Extramural]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsova P, Ibrahim SH, Krishnan A, Verma VK, Bronk SF, Werneburg NW et al (2016) Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 150:956–967. doi:10.1053/j.gastro.2015.12.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim SH, Hirsova P, Tomita K, Bronk SF, Werneburg NW, Harrison SA et al (2015) Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 63:731–744. doi:10.1002/hep.28252

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, Delgado ME et al (2015) Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol Cell 57(5):860–872. doi:10.1016/j.molcel.2015.01.018. [Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idrissova L, Malhi H, Werneburg NW, LeBrasseur NK, Bronk SF, Fingas C et al (2015) TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. J Hepatol 62(5):1156–1163. doi:10.1016/j.jhep.2014.11.033. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  Google Scholar 

  • Kakazu E, Mauer AS, Yin M, Malhi H (2016) Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1alpha-dependent manner. J Lipid Res 57(2):233–245. doi:10.1194/jlr.M063412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakisaka K, Cazanave SC, Fingas CD, Guicciardi ME, Bronk SF, Werneburg NW et al (2012a) Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. Am J Physiol Gastrointest Liver physiol 302(1):G77–G84. doi:10.1152/ajpgi.00301.2011. ajpgi.00301.2011 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kakisaka K, Cazanave SC, Werneburg NW, Razumilava N, Mertens JC, Bronk SF et al (2012b) A hedgehog survival pathway in 'undead' lipotoxic hepatocytes. J Hepatol 57(4):844–851. doi:10.1016/j.jhep.2012.05.011. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321. doi:10.1002/hep.20701. [Multicenter Study Research Support, N.I.H., Extramural Research Support, U.S. Gov't, P.H.S. Validation Studies]

    Article  PubMed  Google Scholar 

  • Liu X, He Y, Li F, Huang Q, Kato TA, Hall RP et al (2015) Caspase-3 promotes genetic instability and carcinogenesis. Mol Cell 58(2):284–296. doi:10.1016/j.molcel.2015.03.003. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS et al (2014) Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345(6192):98–101. doi:10.1126/science.1254312. [Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhi H, Gores GJ (2008) Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Seminars Liver Disease 28(4):360–369. doi:10.1055/s-0028-1091980. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]

    Article  CAS  Google Scholar 

  • Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E (2012) Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. American journal of physiology Gastrointestinal and liver physiology 302(11):G1310–G1321. doi:10.1152/ajpgi.00365.2011. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, Ogata H et al (2014) ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26(3):331–343. doi:10.1016/j.ccr.2014.07.001. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y et al (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364(6440):806–809. doi:10.1038/364806a0. [Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  Google Scholar 

  • Omenetti A, Choi S, Michelotti G, Diehl AM (2011) Hedgehog signaling in the liver. J Hepatol 54(2):366–373. doi:10.1016/j.jhep.2010.10.003. [Research Support, N.I.H., Extramural Review]

    Article  CAS  PubMed  Google Scholar 

  • Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18(3):363–374. doi:10.1038/nm.2627. nm.2627 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Petrovic-Djergovic D, Popovic M, Chittiprol S, Cortado H, Ransom RF, Partida-Sanchez S (2015) CXCL10 induces the recruitment of monocyte-derived macrophages into kidney, which aggravate puromycin aminonucleoside nephrosis. Clin Exp Immunol 180(2):305–315. doi:10.1111/cei.12579. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Povero D, Eguchi A, Niesman IR, Andronikou N, de Mollerat du Jeu X, Mulya A et al (2013) Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require Vanin-1 for uptake by endothelial cells. Sci Signal 6(296):ra88. doi:10.1126/scisignal.2004512. 6/296/ra88 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Raichur S, Wang ST, Chan PW, Li Y, Ching J, Chaurasia B et al (2014) CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 20(4):687–695. doi:10.1016/j.cmet.2014.09.015. [Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. doi:10.1083/jcb.201211138. [Research Support, Non-U.S. Gov't Review]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. [Review]. JAMA 313(22):2263–2273. doi:10.1001/jama.2015.5370

    Article  CAS  PubMed  Google Scholar 

  • Schaefer L (2014) Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 289(51):35237–35245. doi:10.1074/jbc.R114.619304. [Research Support, Non-U.S. Gov't Review]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM et al (2014) Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 20(4):678–686. doi:10.1016/j.cmet.2014.08.002. [Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  Google Scholar 

  • Witek RP, Stone WC, Karaca FG, Syn WK, Pereira TA, Agboola KM et al (2009) Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 50(5):1421–1430. doi:10.1002/hep.23167. [Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK et al (2007) Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45(6):1366–1374. doi:10.1002/hep.21655. [Research Support, N.I.H., Extramural]

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shen J, Man K, Chu ES, Yau TO, Sung JC et al (2014) CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J Hepatol 61(6):1365–1375. doi:10.1016/j.jhep.2014.07.006. [Research Support, Non-U.S. Gov't]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NIH grants DK41876 (GJG), DK97178 and DK107402 (HM), and KL2TR000136-09 (SHI). Support was also provided to P. Hirsova by the American Liver Foundation and Edward C. Kendall Research Fellowship Award (Mayo Clinic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Gores M.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hirsova, P., Ibrahim, S.H., Malhi, H., Gores, G.J. (2017). Hepatocyte Lethal and Nonlethal Lipotoxic Injury. In: Ding, WX., Yin, XM. (eds) Cellular Injury in Liver Diseases. Cell Death in Biology and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-53774-0_5

Download citation

Publish with us

Policies and ethics