Skip to main content

Spectrum Sensing and Access in Heterogeneous SHSNs

  • Chapter
  • First Online:
Book cover Resource Management for Energy and Spectrum Harvesting Sensor Networks

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 423 Accesses

Abstract

In this chapter, we investigate the spectrum sensing and access of a heterogeneous spectrum harvesting sensor network (HSHSN) which consists of EH-enabled spectrum sensors and battery-powered data sensors. The former detects the availability of licensed channels, while the latter transmits sensed data to the sink over the available channels. Two algorithms that operate in tandem are proposed to achieve the sustainability of spectrum sensors and conserve energy of data sensors, while the EH dynamics and PU protections are considered. Extensive simulation results are given to validate the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Frobenius norm is defined as the square root of the sum of the absolute squares of the elements of the matrix. For example, if

    $$\begin{aligned} \varvec{A} = \begin{bmatrix} a_{11}&a_{12} \\ a_{21}&a_{22} \end{bmatrix}, \end{aligned}$$

    then

    $$\begin{aligned} || \varvec{A} ||_{Fr} = \sqrt{|a_{11}|^2 + |a_{12}|^2 + |a_{21}|^2 + |a_{22}|^2}. \end{aligned}$$
  2. 2.

    In [12], the real experimental data obtained from the baseline measurement system (BMS) of the Solar Radiation Research Laboratory (SRRL) shows that the EH rate ranges from 0 to 100 mW for most of the day.

References

  1. D. Zhang, Z. Chen, J. Ren, Z. Ning, K.M. Awad, H. Zhou, X. Shen, Energy harvesting-aided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network. IEEE Trans. Veh. Technol. (to be published). doi:10.1109/TVT.2016.2551721

  2. P. Pratibha, K.H. Li, K.C. Teh, Dynamic cooperative sensing-access policy for energy-harvesting cognitive radio systems. IEEE Trans. Veh. Technol. (to be published). doi:10.1109/TVT.2016.2532900

  3. W. Zhang, Y. Guo, H. Liu, Y. Chen, Z. Wang, J. Mitola, Distributed consensus-based weight design for cooperative spectrum sensing. IEEE Trans. Parallel Distrib. Syst. 26(1), 54–64 (2015)

    Article  Google Scholar 

  4. S.K. Nobar, K.A. Mehr, J.M. Niya, RF-powered green cognitive radio networks: architecture and performance analysis. IEEE Commun. Lett. 20(2), 296–299 (2016)

    Article  Google Scholar 

  5. N.I. Miridakis, T.A. Tsiftsis, G.C. Alexandropoulos, M. Debbah, Green cognitive relaying: Opportunistically switching between data transmission and energy harvesting. IEEE J. Sel. Areas Commun. (to be published)

    Google Scholar 

  6. S.-S. Byun, I. Balasingham, X. Liang, Dynamic spectrum allocation in wireless cognitive sensor networks: improving fairness and energy efficiency, in Proceedings of IEEE VTC, 2008, pp. 1–5

    Google Scholar 

  7. Z. Hu, Y. Sun, Y. Ji, A dynamic spectrum access strategy based on real-time usability in cognitive radio sensor networks, in Proceedings of IEEE MSN, 2011, pp. 318–322

    Google Scholar 

  8. J. Ayala Solares, Z. Rezki, M. Alouini, Optimal power allocation of a single transmitter-multiple receivers channel in a cognitive sensor network, in Proceedings of IEEE ICWCUCA, 2012, pp. 1–6

    Google Scholar 

  9. M. Naeem, K. Illanko, A. Karmokar, A. Anpalagan, M. Jaseemuddin, Energy-efficient cognitive radio sensor networks: Parametric and convex transformations. Sensors 13(8), 11 032–11 050 (2013)

    Google Scholar 

  10. N. Zhang, H. Liang, N. Cheng, Y. Tang, J. Mark, X. Shen, Dynamic spectrum access in multi-channel cognitive radio networks. IEEE J. Sel. Areas Commun. 32(11), 2053–2064 (2014)

    Article  Google Scholar 

  11. R. Deng, J. Chen, C. Yuen, P. Cheng, Y. Sun, Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks. IEEE Trans. Veh. Technol. 61(2), 716–725 (2012)

    Article  Google Scholar 

  12. Y. Zhang, S. He, J. Chen, Y. Sun, X. Shen, Distributed sampling rate control for rechargeable sensor nodes with limited battery capacity. IEEE Trans. Wirel. Commun. 12(6), 3096–3106 (2013)

    Article  Google Scholar 

  13. P. Tehrani, L. Tong, Q. Zhao, Asymptotically efficient multichannel estimation for opportunistic spectrum access. IEEE Trans. Signal Process. 60(10), 5347–5360 (2012)

    Article  MathSciNet  Google Scholar 

  14. H. Kim, K. Shin, Efficient discovery of spectrum opportunities with mac-layer sensing in cognitive radio networks. IEEE Trans. Mobile Comput. 7(5), 533–545 (2008)

    Article  Google Scholar 

  15. Y.-C. Liang, Y. Zeng, E. Peh, A.T. Hoang, Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wirel. Commun. 7(4), 1326–1337 (2008)

    Article  Google Scholar 

  16. S. Atapattu, C. Tellambura, H. Jiang, Energy Detection for Spectrum Sensing in Cognitive Radio. Springer Briefs in Computer Science (Springer, 2014)

    Google Scholar 

  17. R. Rubinstein, The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 1(2), 127–190 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Costa, O.D. Jones, D. Kroese, Convergence properties of the cross-entropy method for discrete optimization. Oper. Res. Lett. 35(5), 573–580 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Floudas, V. Visweswaran, Comput. Chem. Eng. 14(12), 1397–1417 (1990)

    Article  Google Scholar 

  20. J. Gorski, F. Pfeuffer, K. Klamroth, Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res. 66(3), 373–407 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. G.B. Dantzig, M.N. Thapa, Linear Programming 2: Theory and Extensions, vol. 2 (2003)

    Google Scholar 

  22. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004)

    Google Scholar 

  23. Y. Pei, Y.-C. Liang, K. Teh, K.H. Li, Energy-efficient design of sequential channel sensing in cognitive radio networks: optimal sensing strategy, power allocation, and sensing order. IEEE J. Sel. Areas Commun. 29(8), 1648–1659 (2011)

    Article  Google Scholar 

  24. T. Shu, M. Krunz, S. Vrudhula, Joint optimization of transmit power-time and bit energy efficiency in CDMA wireless sensor networks. IEEE Trans. Wirel. Commun. 5(11), 3109–3118 (2006)

    Article  Google Scholar 

  25. H. Yu, W. Tang, S. Li, Optimization of cooperative spectrum sensing in multiple-channel cognitive radio networks, in Proceedings of IEEE GLOBECOM, 2011, pp. 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyu Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Zhang, D., Chen, Z., Zhou, H., Shen, X. (2017). Spectrum Sensing and Access in Heterogeneous SHSNs. In: Resource Management for Energy and Spectrum Harvesting Sensor Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-53771-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53771-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53770-2

  • Online ISBN: 978-3-319-53771-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics