Skip to main content

IBD Therapies: Coming Attractions

  • Chapter
  • First Online:

Part of the book series: Clinical Gastroenterology ((CG))

Abstract

Advances in the understanding of mechanisms of disease activity through preclinical and translational studies have promoted the development of many therapeutic agents in inflammatory bowel disease (IBD). Since FDA approval of infliximab in 1998 for the treatment of Crohn’s disease, five other monoclonal antibodies against either tumor necrosis factor-α or integrin subunits have demonstrated effectiveness in either Crohn’s disease or ulcerative colitis and achieved FDA approval. In addition to these currently available therapies, numerous agents directed against alternative pathways are in development. This includes treatments targeting immune cell adhesion and migration, sphingosine-1-phosphate receptor modulators, agents directed agents against proinflammatory cytokines, and therapies aimed at preventing cytokine mediated signaling pathways. Given heterogeneity in the pathogenesis, clinical phenotype, and treatment responses in patients with IBD, the availability of multiple agents targeting different pathways is likely to lead to improved overall outcomes and change the landscape of treatment recommendations in the next decade.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

IBD:

Inflammatory Bowel Disease

UC:

Ulcerative colitis

JAK:

(Janus Kinase)

STAT:

(signal transducer and activator of transcription)

(TYK2):

Tyrosine Kinase 2

(IL):

Interleukin

TNF:

Tumor Necrosis Factor

CDAI:

Crohn’s disease activity index

PDE4:

(phosphodiesterase 4)

cAMP:

(cyclic adenosine monophosphate)

FDA:

Food and Drug Administration

ICAM-1:

(intracellular adhesion molecule 1)

VCAM-1:

(vascular cell adhesion molecule 1)

MAdCAM-1:

(mucosal vascular addressin cell adhesion molecule 1)

(CCR-9):

C-C chemokine receptor 9

(CCL25):

Chemokine ligand 25

(IP-10):

Interferon-γ-inducible protein 10

(FFA2):

Free fatty acid receptor 2

(S1PR):

Sphingosine-1-phosphate receptor

(TGFβ1):

Transforming growth factor β1

CRP:

c-reactive protein

(CCL-11):

Eotaxin-1

(MMP9):

Matrix metalloproteinase 9

References

  1. Aittomaki S, Pesu M. Therapeutic targeting of the Jak/STAT pathway. Basic Clin Pharmacol Toxicol. 2014;114(1):18–23.

    Article  PubMed  Google Scholar 

  2. Coskun M, Salem M, Pedersen J, Nielsen OH. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res. 2013;76:1–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kremer JM, Bloom BJ, Breedveld FC, Coombs JH, Fletcher MP, Gruben D, et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 2009;60(7):1895–905.

    Article  CAS  PubMed  Google Scholar 

  4. Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370(25):2377–86.

    Article  PubMed  Google Scholar 

  5. van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Garcia Meijide JA, Wagner S, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med. 2012;367(6):508–19.

    Article  PubMed  Google Scholar 

  6. Bachelez H, van de Kerkhof PC, Strohal R, Kubanov A, Valenzuela F, Lee JH, et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet. 2015;386(9993):552–61.

    Article  CAS  PubMed  Google Scholar 

  7. Papp KA, Menter MA, Abe M, Elewski B, Feldman SR, Gottlieb AB, et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: results from two, randomised, placebo-controlled, Phase 3 trials. Br J Dermatol. 2015;173(4):949–61.

    Article  CAS  PubMed  Google Scholar 

  8. Kremer J, Li ZG, Hall S, Fleischmann R, Genovese M, Martin-Mola E, et al. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann Intern Med. 2013;159(4):253–61.

    Article  PubMed  Google Scholar 

  9. Cohen S, Radominski SC, Gomez-Reino JJ, Wang L, Krishnaswami S, Wood SP, et al. Analysis of infections and all-cause mortality in phase II, phase III, and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66(11):2924–37.

    Article  CAS  PubMed  Google Scholar 

  10. Winthrop KL, Yamanaka H, Valdez H, Mortensen E, Chew R, Krishnaswami S, et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66(10):2675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C, Rousell S, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367(7):616–24.

    Article  CAS  PubMed  Google Scholar 

  12. Sandborn WJ, Ghosh S, Panes J, Vranic I, Wang W, Niezychowski W, et al. A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2014;12(9):1485–93.

    Article  CAS  PubMed  Google Scholar 

  13. Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665–74.

    Article  CAS  PubMed  Google Scholar 

  14. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371(9625):1675–84.

    Article  CAS  PubMed  Google Scholar 

  15. Gottlieb A, Menter A, Mendelsohn A, Shen YK, Li S, Guzzo C, et al. Ustekinumab, a human interleukin 12/23 monoclonal antibody, for psoriatic arthritis: randomised, double-blind, placebo-controlled, crossover trial. Lancet. 2009;373(9664):633–40.

    Article  CAS  PubMed  Google Scholar 

  16. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25.

    Article  CAS  PubMed  Google Scholar 

  17. Wang K, Zhang H, Kugathasan S, Annese V, Bradfield JP, Russell RK, et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn disease. Am J Hum Genet. 2009;84(3):399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology. 2008;135(4):1130–41.

    Article  CAS  PubMed  Google Scholar 

  19. Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367(16):1519–28.

    Article  CAS  PubMed  Google Scholar 

  20. Wils P, Bouhnik Y, Michetti P, Flourie B, Brixi H, Bourrier A, et al. Subcutaneous ustekinumab provides clinical benefit for two-thirds of patients with Crohn’s disease refractory to anti-tumor necrosis factor agents. Clin Gastroenterol Hepatol. 2016;14(2):242–50 e2.

    Google Scholar 

  21. Kavanaugh A, Mease PJ, Gomez-Reino JJ, Adebajo AO, Wollenhaupt J, Gladman DD, et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann Rheum Dis. 2014;73(6):1020–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Papp K, Cather JC, Rosoph L, Sofen H, Langley RG, Matheson RT, et al. Efficacy of apremilast in the treatment of moderate to severe psoriasis: a randomised controlled trial. Lancet. 2012;380(9843):738–46.

    Article  CAS  PubMed  Google Scholar 

  23. Hatemi G, Melikoglu M, Tunc R, Korkmaz C, Turgut Ozturk B, Mat C, et al. Apremilast for Behcet’s syndrome--a phase 2, placebo-controlled study. N Engl J Med. 2015;372(16):1510–8.

    Article  CAS  PubMed  Google Scholar 

  24. Eksteen B. Targeting of gut specific leucocyte recruitment in IBD by vedolizumab. Gut. 2014;64(1):8–10.

    Article  PubMed  Google Scholar 

  25. Marlin SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell. 1987;51(5):813–9.

    Article  CAS  PubMed  Google Scholar 

  26. Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL, et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature. 1994;372(6502):190–3.

    Article  CAS  PubMed  Google Scholar 

  27. Kunkel EJ, Campbell JJ, Haraldsen G, Pan J, Boisvert J, Roberts AI, et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med. 2000;192(5):761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature. 2003;424(6944):88–93.

    Article  CAS  PubMed  Google Scholar 

  29. Vermeire S, O’Byrne S, Keir M, Williams M, Lu TT, Mansfield JC, et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet. 2014;384(9940):309–18.

    Article  CAS  PubMed  Google Scholar 

  30. Tew GW, Hackney JA, Gibbons D, Lamb CA, Luca D, Egen JG, et al. Association between response to etrolizumab and expression of integrin alphaE and Granzyme A in Colon biopsies of patients with ulcerative colitis. Gastroenterology. 2015;150(2):477–87.

    Article  PubMed  Google Scholar 

  31. Pan WJ, Hsu H, Rees WA, Lear SP, Lee F, Foltz IN, et al. Pharmacology of AMG 181, a human anti-alpha4 beta7 antibody that specifically alters trafficking of gut-homing T cells. Br J Pharmacol. 2013;169(1):51–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pullen N, Molloy E, Carter D, Syntin P, Clemo F, Finco-Kent D, et al. Pharmacological characterization of PF-00547659, an anti-human MAdCAM monoclonal antibody. Br J Pharmacol. 2009;157(2):281–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vermeire S, Ghosh S, Panes J, Dahlerup JF, Luegering A, Sirotiakova J, et al. The mucosal addressin cell adhesion molecule antibody PF-00547,659 in ulcerative colitis: a randomised study. Gut. 2011;60(8):1068–75.

    Article  CAS  PubMed  Google Scholar 

  34. Reinisch W, Sandborn WJ, Danese S, Cataldi F, Hebuterne X, Salzberg B, et al. A randomized, multicenter double-blind, placebo-controlled study of the safety and efficacy of anti-MAdCAM antibody PF-00547659 (PF) in patients with moderate to severe ulcerative Coltis: results of the TURANDOT study. Gastroenterology. 2015;148(S1):S-1193.

    Article  Google Scholar 

  35. Sandborn WJ, Lee SD, Tarabar D, Louis E, Klopocka M, Klaus J, et al. Anti-MAdCAM-1 antibody (PF-00547659) for active refractory Crohn’s disease: results of the OPERA study. Gastroenterology. 2015;148(S1):S112.

    Google Scholar 

  36. Keshav S, Vanasek T, Niv Y, Petryka R, Howaldt S, Bafutto M, et al. A randomized controlled trial of the efficacy and safety of CCX282-B, an orally-administered blocker of chemokine receptor CCR9, for patients with Crohn’s disease. PLoS One. 2013;8(3):e60094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feagan BG, Sandborn WJ, D’Haens G, Lee SD, Allez M, Fedorak RN, et al. Randomised clinical trial: vercirnon, an oral CCR9 antagonist, vs. placebo as induction therapy in active Crohn’s disease. Aliment Pharmacol Ther. 2015;42(10):1170–81.

    Article  CAS  PubMed  Google Scholar 

  38. Mayer L, Sandborn WJ, Stepanov Y, Geboes K, Hardi R, Yellin M, et al. Anti-IP-10 antibody (BMS-936557) for ulcerative colitis: a phase II randomised study. Gut. 2014;63(3):442–50.

    Article  CAS  PubMed  Google Scholar 

  39. Sandborn WJ, Rutgeerts PJ, Colombel JF, Ghosh S, Petryka R, Sands BE, et al. Phase IIA, randomized, placebo-controlled evaluation of the efficacy and safety of induction therapy with Eldelumab (anti-IP-10 antibody; BMS- 936557) in patients with active Crohn’s disease. Gastroenterology. 2015;148(S1):S162.

    Google Scholar 

  40. Pizzonero M, Dupont S, Babel M, Beaumont S, Bienvenu N, Blanque R, et al. Discovery and optimization of an azetidine chemical series as a free fatty acid receptor 2 (FFA2) antagonist: from hit to clinic. J Med Chem. 2014;57(23):10044–57.

    Article  CAS  PubMed  Google Scholar 

  41. Vermeire S, Kojecky V, Knoflicek V, Reinisch W, Van Kaem T, Namour F, et al. GLPG0974, an FFA2 antagonist, in ulcerative colitis: efficacy and safety in a multicenter proof- of-concept study. J Crohn’s Colitis. 2015;S1:S39.

    Google Scholar 

  42. Sandborn WJ, Feagan BG, Wolf DC, D'Haens G, Vermeire S, Hanauer SB, et al. The TOUCHSTONE study: a randomized, double-blind, placebo-controlled induction trial of an oral S1P receptor modulator (RPC1063) in moderate to severe ulcerative colitis. Gastroenterology. 2015;148(4):S-93.

    Article  Google Scholar 

  43. Hanauer SB, Feagan BG, Wolf DC, D'Haens G, Vermeire S, Ghosh S, et al. A randomized, double-blind, placebo-controlled trial of Ozanimod, an oral S1P receptor modulator, in moderate to severe ulcerative colitis: results of the maintenance period of the TOUCHSTONE study. Am J Epidemiol. 2015;110(S1):S793.

    Google Scholar 

  44. Buzard DJ, Kim SH, Lopez L, Kawasaki A, Zhu X, Moody J, et al. Discovery of APD334: Design of a Clinical Stage Functional Antagonist of the sphingosine-1-phosphate-1 receptor. ACS Med Chem Lett. 2014;5(12):1313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sands BE, Chen J, Penney M, Newbold P, Faggioni R, van der Merwe R, et al. A randomized, double-blind placebo-controlled phase 2a induction study of MEDI2070 (anti-p19 antibody) in patients with active Crohn’s disease who have failed anti-TNF antibody therapy. J Crohn’s Colitis. 2015;S1:S15–S6.

    Google Scholar 

  46. Krueger JG, Ferris LK, Menter A, Wagner F, White A, Visvanathan S, et al. Anti-IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2015;136(1):116–24 e7.

    Google Scholar 

  47. Inoue S, Matsumoto T, Iida M, Mizuno M, Kuroki F, Hoshika K, et al. Characterization of cytokine expression in the rectal mucosa of ulcerative colitis: correlation with disease activity. Am J Gastroenterol. 1999;94(9):2441–6.

    Article  CAS  PubMed  Google Scholar 

  48. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129(2):550–64.

    Article  CAS  PubMed  Google Scholar 

  49. Danese S, Rudzinski J, Brandt W, Dupas JL, Peyrin-Biroulet L, Bouhinik Y, et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut. 2015;64(2):243–9.

    Article  CAS  PubMed  Google Scholar 

  50. Hua F, Ribbing J, Reinisch W, Cataldi F, Martin S. A pharmacokinetic comparison of anrukinzumab, an anti- IL-13 monoclonal antibody, among healthy volunteers, asthma and ulcerative colitis patients. Br J Clin Pharmacol. 2015;80(1):101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reinisch W, Panes J, Khurana S, Toth G, Hua F, Comer GM, et al. Anrukinzumab, an anti-interleukin 13 monoclonal antibody, in active UC: efficacy and safety from a phase IIa randomised multicentre study. Gut. 2015;64(6):894–900.

    Article  CAS  PubMed  Google Scholar 

  52. Scharl M, Frei S, Pesch T, Kellermeier S, Arikkat J, Frei P, et al. Interleukin-13 and transforming growth factor beta synergise in the pathogenesis of human intestinal fistulae. Gut. 2013;62(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu M, Pleasic-Williams S, Lin TH, Wunderlich DA, Cheng JB, Masferrer JL. pSTAT3: a target biomarker to study the pharmacology of the anti-IL-21R antibody ATR-107 in human whole blood. J Transl Med. 2013;11:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hua F, Comer GM, Stockert L, Jin B, Nowak J, Pleasic-Williams S, et al. Anti-IL21 receptor monoclonal antibody (ATR-107): safety, pharmacokinetics, and pharmacodynamic evaluation in healthy volunteers: a phase I, first-in-human study. J Clin Pharmacol. 2014;54(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  55. Hosokawa T, Kusugami K, Ina K, Ando T, Shinoda M, Imada A, et al. Interleukin-6 and soluble interleukin-6 receptor in the colonic mucosa of inflammatory bowel disease. J Gastroenterol Hepatol. 1999;14(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  56. Zorzi F, Monteleone I, Sarra M, Calabrese E, Marafini I, Cretella M, et al. Distinct profiles of effector cytokines mark the different phases of Crohn’s disease. PLoS One. 2013;8(1):e54562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Atreya R, Mudter J, Finotto S, Mullberg J, Jostock T, Wirtz S, et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat Med. 2000;6(5):583–8.

    Article  CAS  PubMed  Google Scholar 

  58. Maini RN, Taylor PC, Szechinski J, Pavelka K, Broll J, Balint G, et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum. 2006;54(9):2817–29.

    Article  CAS  PubMed  Google Scholar 

  59. Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet. 2008;371(9617):987–97.

    Article  CAS  PubMed  Google Scholar 

  60. Yokota S, Imagawa T, Mori M, Miyamae T, Aihara Y, Takei S, et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet. 2008;371(9617):998–1006.

    Article  CAS  PubMed  Google Scholar 

  61. Matsuyama M, Suzuki T, Tsuboi H, Ito S, Mamura M, Goto D, et al. Anti-interleukin-6 receptor antibody (tocilizumab) treatment of multicentric Castleman’s disease. Intern Med. 2007;46(11):771–4.

    Article  PubMed  Google Scholar 

  62. Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Andoh A, et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology .2004;126(4):989–96; discussion 47.

    Google Scholar 

  63. Bhol KC, Tracey DE, Lemos BR, Lyng GD, Erlich EC, Keane DM, et al. AVX-470: a novel oral anti-TNF antibody with therapeutic potential in inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(11):2273–81.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Scott Harris M, Hartma D, Lemos BR, Erlich EC, Spence S, Kennedy S, Ptak T, Pruitt R, Vermeire S, Fox BS. J Crohns Colitis. 2016;10(6):631–40.

    Google Scholar 

  65. Poolsup N, Suthisisang C, Prathanturarug S, Asawamekin A, Chanchareon U. Andrographis Paniculata in the symptomatic treatment of uncomplicated upper respiratory tract infection: systematic review of randomized controlled trials. J Clin pharm Ther. 2004;29(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  66. Chao WW, Kuo YH, Lin BF. Anti-inflammatory activity of new compounds from Andrographis Paniculata by NF-kappaB transactivation inhibition. J Agric food Chem. 2010;58(4):2505–12.

    Article  CAS  PubMed  Google Scholar 

  67. Parichatikanond W, Suthisisang C, Dhepakson P, Herunsalee A. Study of anti-inflammatory activities of the pure compounds from Andrographis Paniculata (burm.F.) Nees and their effects on gene expression. Int Immunopharmacol. 2010;10(11):1361–73.

    Article  CAS  PubMed  Google Scholar 

  68. Tang T, Targan SR, Li ZS, Xu C, Byers VS, Sandborn WJ. Randomised clinical trial: herbal extract HMPL-004 in active ulcerative colitis – a double-blind comparison with sustained release mesalazine. Aliment Pharmacol Ther. 2011;33(2):194–202.

    Article  CAS  PubMed  Google Scholar 

  69. Sandborn WJ, Targan SR, Byers VS, Rutty DA, Mu H, Zhang X, et al. Andrographis Paniculata extract (HMPL-004) for active ulcerative colitis. Am J Gastroenterol. 2013;108(1):90–8.

    Article  PubMed  Google Scholar 

  70. Monteleone G, Kumbirova A, Croft NM, McKenzie C, Steer HW, MacDonald TT. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001;108(4):601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Monteleone G, Fantini MC, Onali S, Zorzi F, Sancesario G, Bernardini S, et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol Ther. 2012;20(4):870–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monteleone G, Neurath MF, Ardizzone S, Di Sabatino A, Fantini MC, Castiglione F, et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med. 2015;372(12):1104–13.

    Article  CAS  PubMed  Google Scholar 

  73. Gurevich M, Gritzman T, Orbach R, Tuller T, Feldman A, Achiron A. Laquinimod suppress antigen presentation in relapsing-remitting multiple sclerosis: in-vitro high-throughput gene expression study. J Neuroimmunol. 2010;221(1–2):87–94.

    Article  CAS  PubMed  Google Scholar 

  74. Yang JS, Xu LY, Xiao BG, Hedlund G, Link H. Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF-beta in Lewis rats. J Neuroimmunol. 2004;156(1–2):3–9.

    Article  CAS  PubMed  Google Scholar 

  75. D’Haens G, Sandborn WJ, Colombel JF, Rutgeerts P, Brown K, Barkay H, et al. A phase II study of laquinimod in Crohn’s disease. Gut. 2015;64(8):1227–35.

    Article  PubMed  Google Scholar 

  76. Fitzpatrick LR, Deml L, Hofmann C, Small JS, Groeppel M, Hamm S, et al. 4SC-101, a novel immunosuppressive drug, inhibits IL-17 and attenuates colitis in two murine models of inflammatory bowel disease. Inflamm Bowel Dis. 2010;16(10):1763–77.

    Article  PubMed  Google Scholar 

  77. Herrlinger KR, Diculescu M, Fellermann K, Hartmann H, Howaldt S, Nikolov R, et al. Efficacy, safety and tolerability of vidofludimus in patients with inflammatory bowel disease: the ENTRANCE study. J Crohns Colitis. 2013;7(8):636–43.

    Article  CAS  PubMed  Google Scholar 

  78. Papp K, Pariser D, Catlin M, Wierz G, Ball G, Akinlade B, et al. A phase 2a randomized, double-blind, placebo-controlled, sequential dose-escalation study to evaluate the efficacy and safety of ASP015K, a novel Janus kinase inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2015;173(3):767–76.

    Article  CAS  PubMed  Google Scholar 

  79. Menet CJ, Fletcher SR, Van Lommen G, Geney R, Blanc J, Smits K, et al. Triazolopyridines as selective JAK1 inhibitors: from hit identification to GLPG0634. J Med Chem. 2014;57(22):9323–42.

    Article  CAS  PubMed  Google Scholar 

  80. Van Rompaey L, Galien R, van der Aar EM, Clement-Lacroix P, Nelles L, Smets B, et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J Immunol. 2013;191(7):3568–77.

    Article  PubMed  Google Scholar 

  81. Dubreuil P, Letard S, Ciufolini M, Gros L, Humbert M, Casteran N, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One. 2009;4(9):e7258.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Coburn LA, Horst SN, Chaturvedi R, Brown CT, Allaman MM, Scull BP, et al. High-throughput multi-analyte Luminex profiling implicates eotaxin-1 in ulcerative colitis. PLoS One. 2013;8(12):e82300.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vieira AT, Fagundes CT, Alessandri AL, Castor MG, Guabiraba R, Borges VO, et al. Treatment with a novel chemokine-binding protein or eosinophil lineage-ablation protects mice from experimental colitis. Am J Pathol. 2009;175(6):2382–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marshall DC, Lyman SK, McCauley S, Kovalenko M, Spangler R, Liu C, et al. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One. 2015;10(5):e0127063.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bhandari BR, Fogel R, Onken J, Yen EH, Kanwar B, Subramanian GM, et al. Safety and efficacy of GS-5745 an anti-matrix metalloproteinase 9 (MMP) monoclonal antibody in patients with moderately to severely active ulcerative colitis. Gastroenterology. 2015;148(S1):S-1196.

    Article  Google Scholar 

  86. DeSchryver-Kecskemeti K, Eliakim R, Carroll S, Stenson WF, Moxley MA, Alpers DH. Intestinal surfactant-like material. A novel secretory product of the rat enterocyte. J Clin Invest. 1989;84(4):1355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ehehalt R, Wagenblast J, Erben G, Lehmann WD, Hinz U, Merle U, et al. Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoElectrospray-tandem mass spectrometry. Scand J Gastroenterol. 2004;39(8):737–42.

    Article  CAS  PubMed  Google Scholar 

  88. Braun A, Treede I, Gotthardt D, Tietje A, Zahn A, Ruhwald R, et al. Alterations of phospholipid concentration and species composition of the intestinal mucus barrier in ulcerative colitis: a clue to pathogenesis. Inflamm Bowel Dis. 2009;15(11):1705–20.

    Article  PubMed  Google Scholar 

  89. Stremmel W, Merle U, Zahn A, Autschbach F, Hinz U, Ehehalt R. Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis. Gut. 2005;54(7):966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stremmel W, Ehehalt R, Autschbach F, Karner M. Phosphatidylcholine for steroid-refractory chronic ulcerative colitis: a randomized trial. Ann Intern Med. 2007;147(9):603–10.

    Article  PubMed  Google Scholar 

  91. Stremmel W, Braun A, Hanemann A, Ehehalt R, Autschbach F, Karner M. Delayed release phosphatidylcholine in chronic-active ulcerative colitis: a randomized, double-blinded, dose finding study. J Clin Gastroenterol. 2010;44(5):e101–7.

    CAS  PubMed  Google Scholar 

  92. Karner M, Kocjan A, Stein J, Schreiber S, von Boyen G, Uebel P, et al. First multicenter study of modified release phosphatidylcholine “LT-02” in ulcerative colitis: a randomized, placebo-controlled trial in mesalazine-refractory courses. Am J Gastroenterol. 2014;109(7):1041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Pekow MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pekow, J. (2017). IBD Therapies: Coming Attractions. In: Cohen, R. (eds) Inflammatory Bowel Disease. Clinical Gastroenterology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-53763-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53763-4_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-53761-0

  • Online ISBN: 978-3-319-53763-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics