Skip to main content

Additive Manufacturing of Funtionally Graded Materials

  • Chapter
  • First Online:
Functionally Graded Materials

Abstract

Functionally graded materials (FGMs) are advanced materials that are used to prevent the problems that arise when composite materials with sharp interfaces are used in a harsh working environment, which includes stress singularities due to property mismatchs, poor adhesion, and delamination. A number of conventional manufacturing processes have been used to produce functionally graded materials and some of these manufacturing processes were presented in Chap. 3. Additive manufacturing (AM) technology is an advanced manufacturing process that offers many advantages and possibilities for the fabrication of complex three-dimensional products through material addition, as against the material removal in the conventional machining processes. Some of the AM technologies have the capability of fabricating complex parts that are made with the functionally graded material (FGM) in a single manufacturing process. Some of the AM technologies that are used to produce functional FGM parts include: selective-laser sintering, selective-laser melting, the laser-metal deposition process, and fused-deposition modelling. These AM technologies are presented in this chapter; and some of the research work using these technologies for the fabrication of FGMs are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scott, J., Gupta, N., Wember, C., Newsom, S., Wohlers, T., Caffrey, T.: Additive manufacturing: status and opportunities, Science and Technology Policy Institute. Available from: https://www.ida.org/stpi/occasionalpapers/papers/AM3D_33012_Final.pdf (2012). Accessed on 11 Sept 2016

  2. Mahamood, R.M., Akinlabi, E.T.: Achieving mass customization through additive manufacturing. In: Schlick, C., Trzcieliński, S. (eds.) Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future. Springer International Publishing Switzerland, pp. 385–390 (2016)

    Google Scholar 

  3. Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Evolutionary additive manufacturing: an overview. Lasers in Engineering 27, 161–178 (2014)

    Google Scholar 

  4. Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Functionally graded material: an overview. In: Proceedings of the World Congress on Engineering, vol. III, pp. 1593–1597, WCE 2012, July 4–6, 2012, London, U.K. (2012)

    Google Scholar 

  5. Jacobs, P.F.: Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. SME Publication, Dearborn (1992)

    Google Scholar 

  6. Gibson, I., Rosen, D.W., Stucker, B.: Additive manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing, 1st edn. Springer, New York (2010)

    Google Scholar 

  7. Sachs, M. E., Haggerty, J.S., Cima, M.J., Williams, P.A.: Three-Dimensional printing Techniques. US Patent, 5204055 (1993)

    Google Scholar 

  8. Comb, J.W., Priedeman, W.R., Turley, P.W.: FDM technology-process improvements. In: Proceedings of Solid Freeform Fabrication Symposium, pp. 42–49. Austin, TX

    Google Scholar 

  9. Beaman, J.J., Barlow, J.W., Bourell, D.L., Barlow, J.W., Crawford, R.H., McAlea, K.P.: Solid Freeform Fabrication: A New Direction in Manufacturing, pp. 25–49. Kluwer Academic Publishers, Norwell (1997)

    Book  Google Scholar 

  10. Feygin, M., Hsieh, B.: Laminated Object Manufacturing (LOM): A Simpler Process. In: Proceedings of Solid Freeform Fabrication Symposium (pp. 123–130). Austin, TX (1991)

    Google Scholar 

  11. Mazumder, J., Schifferer, A., Choi, J.: Direct materials deposition: designed macro- and micro-structures. Mater. Res. Innovations 3(3), 118–131 (1999)

    Google Scholar 

  12. Wohlers, T.: Additive manufacturing 101: Part I. Available at: http://www.wohlersassociates.com/JanFeb10TC.htm (2010). Accessed 3rd Oct 2016

  13. Ahn, S.-H., Montero, M., Odell, D., Roundy, S., Wright, P.K.: Anisotropic material properties of fused-deposition modelling ABS. Rapid Prototyping 8(4), 248–257 (2002)

    Article  Google Scholar 

  14. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical properties of fused-deposition modelling processed parts. Mater. Des. 31, 287–295 (2010)

    Article  Google Scholar 

  15. Es-Said, O.S., Foyos, J., Noorani, R., Mendelson, M., Marloth, R.: Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Processes 15(1), 107–122 (2000)

    Article  Google Scholar 

  16. Galantucci, L.M., Lavecchia, F., Percoco, G.: Study of compression properties of topologically optimized FDM-made structured parts. Manuf. Technol 57, 243–246 (2008)

    Article  Google Scholar 

  17. Huang, T., Mason, M.S., Hilmas, G.E., Leu, M.C.: Freeze-Form extrusion fabrication of ceramic parts. Int. J Virtual Phys Prototyping 1(2), 93–100 (2006)

    Article  Google Scholar 

  18. Mason, M.S., Huang, T., Landers, R.G., Leu, M.C., Hilmas, G.E.: Aqueous-based extrusion of high solids loading ceramic pastes: process modelling and control. J. Mater. Process. Technol. 209(6), 2946–2957 (2009)

    Article  Google Scholar 

  19. Huang, T., Mason, M.S., Hilmas, G.E., Leu, M.C.: Aqueous based freeze-form extrusion fabrication of alumina components. Rapid Prototyping J. 15(2), 88–95 (2009)

    Article  Google Scholar 

  20. Zhao, X., Landers, R.G., Leu, M.C.: Adaptive extrusion force control of freeze-form extrusion fabrication processes. ASME J. Manuf. Sci. Eng. 132(6)

    Google Scholar 

  21. Doiphode, N.D., Huang, T., Leu, M.C., Rahaman, M.N., Day, D.E.: Freeze-Extrusion fabrication of 13-93 Bioactive glass scaffolds for bone repair. J. Mater. Sci. Mater. Med. 22(3), 515–523 (2011)

    Article  Google Scholar 

  22. Leu, M.C., Deuser, B.K., Tang, L., Landers, R.G., Hilmas, G.E. Watts, J.L.: Freeze-form extrusion fabrication of functionally graded materials. CIRP Ann. Manuf. Technol. 61(1), 223–226

    Google Scholar 

  23. Srivastava, M., Maheshwari, S., Kundra, T.K.: Virtual modelling and simulation of functionally graded material components using FDM technique. Mater. Today Proc 2(4–5), 3471–3480 (2015)

    Article  Google Scholar 

  24. Li, L., Sun, Q., Bellehumeur, C., Gu, P.: Composite modelling and analysis for fabrication of FDM prototypes with locally controlled properties. J. Manuf. Processes 4(2) (2002)

    Google Scholar 

  25. Wang, P., Tan, X., Nai, M.L.S., Tor, S.B., Wei, J.: Spatial and geometrical-based characterization of microstructure and microhardness for an electron-beam melted Ti–6Al–4V component. Mater. Des. 95, 287–295 (2016)

    Google Scholar 

  26. Hinojos, A., Mireles, J., Reichardt, A., Frigola, P., Hosemann, P., Murr, l.E., Wicker, R.B.: Joining of Inconel 718 and 316 stainless steel using electron-beam melting additive-manufacturing technology. Mater. Des. 94, 17–27

    Google Scholar 

  27. Tan, X., Kok, Y., Tan, Y.J., Vastola, G., Pei, Q.S., Zhang, G., Zhang, Y-W., Tor, S. B., Leong, K. F., Chua, C.K.: An experimental and simulation study on build thickness-dependent microstructure for electron-beam melted Ti–6Al–4V. J. Alloys Compd. 646, 303–309 (2015)

    Google Scholar 

  28. Tan, X., Kok, Y., Tan, Y.J., Descoins, M., Mangelinck, D., Tor, S.B., Leong, K.F., Chua, C.K.: Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron-beam melting. Acta Mater. 97, 1–16 (2015)

    Article  Google Scholar 

  29. Ardila, L.C., Garciandia, F., Gonzalez-Diaz, J.B., Alvarez, P., Echeverria, A., Petite, M.M., et al.: Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting. In: Physics Procedia of the 8th International Conference on Photonic Technologies LANE, vol. 56, pp. 99–107

    Google Scholar 

  30. Seyda, V., Kaufmann, N., Emmelmann, C.: (2012). Investigation of aging processes of Ti–6Al–4V powder material in laser melting. In: Physics Procedia of the 7th International Conference & Exhibition on Photonic Technologies LANE, vol. 39, pp. 425–31

    Google Scholar 

  31. Yan, M., Zhou, C., Tian, X., Peng, G., Cao, Y., Li, D.: Design and selective laser sintering of complex porous polyamide mould for pressure-slip casting. Mater. Des. 111, 198–205 (2016)

    Google Scholar 

  32. Salmoria, G.V., Cardenuto, M.R., Roesler, C.R.M., Zepon, K.M., Kanis, L.A.: PCL/Ibuprofen implants fabricated by selective laser sintering for orbital repair. Procedia CIRP 49, 188–192 (2016)

    Article  Google Scholar 

  33. Du, Y., Liu, H., Shuang, J., Wang, J., Ma, J., Zhang, S.: Microsphere-based selective laser sintering for building macro-porous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids Surf. B 135, 81–89 (2015)

    Article  Google Scholar 

  34. Chung, H., Das, S.: Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Mater. Sci. Eng. A 487(1–2), 251–257 (2008)

    Article  Google Scholar 

  35. Chung, H., Das, S.: Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater. Sci. Eng. A 437(2), 226–234 (2006)

    Article  Google Scholar 

  36. Ahmadi, A., Mirzaeifar, R., Moghaddam, N.S., Turabi, A.S., Karaca, H.E., Elahinia, M.: Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: a computational framework. Mater. Des. 112, 328–338 (2016)

    Google Scholar 

  37. Pawlak, N., Rosienkiewicz, M., Chlebus, E.: Design of experiments approach in AZ31 powder selective laser-melting process optimization. Arch Civ. Mech. Eng. 17, 9–18 (2017)

    Article  Google Scholar 

  38. Matsumoto, R., Kanatani, S., Utsunomiya, H.: Filling of surface pores of aluminum foam with polyamide by selective laser melting for improvement in mechanical properties. J. Mater. Process. Technol. 237, 402–408 (2016)

    Article  Google Scholar 

  39. Maskery, I., Aboulkhair, N.T., Aremu, A.O., Tuck, C.J., Ashcroft, I.A., Wildman, R.D., Hague, R.J.M.: A mechanical property evaluation of graded density Al–Si10–Mg lattice structures manufactured by selective laser melting. Mater. Sci. Eng. A 670, 264–274 (2016)

    Article  Google Scholar 

  40. Sola, A., Bellucci, D., Cannillo, V.: Functionally graded materials for orthopedic applications—an update on design and manufacturing. Biotechnol. Adv. 34(5), 504–531 (2016)

    Article  Google Scholar 

  41. Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technology—Rapid Prototyping to Direct Digital Manufacturing. Springer, New York (2010)

    Google Scholar 

  42. Baumers, M., Tuck, C., Hague, R.: Selective heat sintering versus laser sintering: comparison of deposition rate, process energy consumption and cost performance. Available at: http://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-9-Baumers.pdf. Accessed online on 4th Oct 2016

  43. Hiemenz, J.: Electron-beam melting. Adv. Mater. Processes, pp. 45–46 (2007)

    Google Scholar 

  44. Ruttert, B., Ramsperger, M., Roncery, L.M., Lopez-Galilea, I., Körner, C., Theisen, W.: Impact of hot isostatic pressing on microstructures of CMSX-4 Ni-base superalloy fabricated by selective electron-beam melting. Mater. Des. 110, 720–727 (2016)

    Google Scholar 

  45. Fiaz, Hasan S., Settle, Casey R., Hoshino, Kazunori: Metal-additive manufacturing for micro-electro-mechanical systems: Titanium alloy (Ti–6Al–4V)-based nanopositioning flexure fabricated by electron-beam melting. Sens. Actuators A 249(1), 284–293 (2016)

    Article  Google Scholar 

  46. Algardh, J.K., Horn, T., West, H., Aman, R., Snis, A. Engqvist, H., Lausmaa, J., Harrysson, O.: Thickness dependency of mechanical properties for thin-walled titanium parts manufactured by Electron-Beam Melting (EBM)®. Addit. Manuf. 12, Part A, 45–50

    Google Scholar 

  47. Portolés, L., Jordá, O., Jordá, L., Uriondo, A., Esperon-Miguez, M., Perinpanayagam, S.: A qualification procedure to manufacture and repair aerospace parts with electron-beam melting. J. Manuf. Syst. 41, 65–75 (2016)

    Article  Google Scholar 

  48. Yan, W., Ge, W., Smith, J., Lin, S., Kafka, O.L., Lin, F., Liu, W.K.: Multi-scale modelling of electron-beam melting of functionally graded materials. Acta Mater. 115, 403–412 (2016)

    Article  Google Scholar 

  49. Trainia, T., Mangano, 1, C., Sammons, R.L., Mangano, F., Macchib, A., Piattelli, A.: Direct laser-metal sintering as a new approach to fabrication of an isoelastic functionally graded material for the manufacture of porous titanium dental implants. Dent. Mater. 24, 1525–1533 (2008)

    Google Scholar 

  50. Sudarmadji, N., Tan, J.Y., Leong, K.F., Chua, C.K., Loh, Y.T.: Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedrals for functionally graded scaffolds. Acta Biomater. 7, 530–537 (2011)

    Article  Google Scholar 

  51. Hazlehurst, K.B., Wang, C.J., Stanford, M.: An investigation into the flexural characteristics of functionally graded cobalt-chrome femoral stems manufactured using selective-laser melting. Mater. Des. 60, 177–183 (2014)

    Article  Google Scholar 

  52. Dumont, A-L., Bonnet, J-P., Chartier, T., Ferreira, J.M.F.: MoSi2/Al2O3 FGM: elaboration by tape casting and SHS. J. Eur. Ceram. Soc. 21, 2353–2360 (2001)

    Google Scholar 

  53. Pinkerton, A.J., Wang, W., Li, L.: Component repair using laser direct-metal deposition. J. Eng. Manuf. 222, 827–836 (2008)

    Article  Google Scholar 

  54. Graf, B., Gumenyuk, A., Rethmeier, M.: Laser-metal deposition as repair technology for stainless steel and Titanium alloys. Phys. Procedia 39, 376–381 (2012)

    Article  Google Scholar 

  55. Mahamood, R.M., Akinlabi, E.T., Shukla M., Pityana, S.: Functionally graded material: an overview. Proc. World Congr. Eng. WCE 3, 1593–1597 (2012)

    Google Scholar 

  56. Mahamood, R.M., Akinlabi, E.T.: Laser-metal deposition of functionally graded Ti6Al4V/TiC. Mater. Des. 84, 402–410 (2015)

    Google Scholar 

  57. Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: scanning velocity influence on microstructure, microhardness and wear-resistance performance on laser-deposited Ti6Al4V/TiC composite. Mater. Des. 50, 656–666 (2013)

    Article  Google Scholar 

  58. Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Characterizing the effect of laser-power density on microstructure, microhardness and surface finish of laser-deposited titanium alloy. J. Manuf. Sci. Eng. 135(6), doi:10.1115/1.4025737 (2013)

  59. Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Effect of laser power on material efficiency, layer height and width of laser-metal deposited Ti6Al4V, pp. 1433–1438. World Congress of Engineering and Computer Science, San Francisco (2012)

    Google Scholar 

  60. Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.: Characterization of laser-deposited Ti6A4V/TiC composite. Lasers Eng. 29(3–4), 197–213 (2014)

    Google Scholar 

  61. Milewski, J.O., Lewis, G.K., Thoma, D.J., Keel, G.I., Nemec, R.B., Reinert, R.A.: Directed-light fabrication of a solid metal hemisphere using 5-axis powder deposition. J. Mater. Process. Technol. 75, 165–172 (1998)

    Article  Google Scholar 

  62. Carroll, B.E., Otis, R.A., Borgonia, J.P., Suh, J.-O., Dillon, R.P., Shapiro, A.A., Hofmann, D.C., Liu, Z.-K., Beese, A.M.: Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed-energy deposition: characterization and thermodynamic modelling. Acta Mater. 108, 46–54 (2016)

    Article  Google Scholar 

  63. Shah, K., Haq, I.U., Khan, A., Shah, S.A., Khan, M., Pinkerton, A.J.: Parametric study of development of inconel-steel functionally graded materials by laser direct-metal deposition. Mater. Des. 54, 531–538 (2014)

    Google Scholar 

  64. Mahamood, R.M., Akinlabi, E.T.: Laser-metal deposition of functionally graded Ti6Al4V/TiC. Mater. Des. 84(5), 402–410 (2015)

    Google Scholar 

  65. Balla, V.K., DeVasConCellos, P.D., Xue, W., Bose, S., Bandyopadhyay, A.: Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser-engineered net shaping (LENS). Acta Biomater. 5, 1831–1837 (2009)

    Article  Google Scholar 

  66. Durejko, T., Ziętala, M., Polkowski, W., Czujko, T.: Thin-wall tubes with Fe3Al/SS316L graded structure obtained by using laser-engineered net-shaping technology. Mater. Des. 63, 766–774 (2014)

    Article  Google Scholar 

  67. Boboulos, M.A.: CAD-CAM & rapid prototyping application evaluation. Retrieved 21st September 2016 from www.bookBoom.com (2011)

  68. Klosterman, D.A., Chartoff, R.P., Osborne, N.R., Graves, G.A., Lightman, A., Han, G., Bezeredi, A., Rodrigues, S.: Curved layer LOM of ceramics and composites. In: Proceedings of the 1998 Solid Freeform Fabrication Symposium, pp. 671–680 (1998)

    Google Scholar 

  69. Banerjee, S.: Development of a novel toner for electrophotography-based additive manufacturing process. Ph.D. thesis, De Montlbrt University (2009)

    Google Scholar 

  70. Nakagawa, T.: Recent developments in auto-body panel forming technology. CIRP Ann. Manuf. Technol. 42(2), 1\1–121 (1993)

    Google Scholar 

  71. Nakagawa, T., Kunieda, M.: Manufacturing of laminated deep-drawing dies by laser-beam cutting. Adv. Technol. Plast. 1, 520–525 (1984)

    Google Scholar 

  72. Zhang, Y., Han, J., Zhang, X., He, X., Li, Z., Du, S.: Rapid prototyping and combustion synthesis of TiC/Ni functionally gradient materials. Mater. Sci. Eng. A 299, 218–224 (2001)

    Article  Google Scholar 

  73. White, D.R.: Ultrasonic consolidation of aluminium tooling. Adv. Mater. Processes 64–65 (2003)

    Google Scholar 

  74. Kumar, S.: Development of functionally graded materials by ultrasonic consolidation. CIRP J. Manuf. Sci. Technol. 3, 85–87 (2010)

    Article  Google Scholar 

  75. Kong, C.Y., Soar, R.C., Dickens, P.M.: Ultrasonic consolidation for embedding SMA fibres within aluminium matrices. Compos. Struct. 66, 421–427 (2005)

    Article  Google Scholar 

  76. Domack, M.S., Baughman, J.M.: Development of nickel-titanium-graded composition components. Rapid Prototyping J. 11(1), 41–51 (2005)

    Article  Google Scholar 

  77. Hu, Y., Fadel, G.M., Blouin, V.Y., White, D.R.: Optimal design for additive manufacturing of heterogeneous objects using ultrasonic consolidation. Virtual Phys. Prototyping 1(1), 53–62 (2006)

    Article  Google Scholar 

  78. White, D.R.: Ultrasonic consolidation of aluminium tooling. Adv. Mater. Processes 161, 64–65 (2003)

    Google Scholar 

  79. Tari, M.J., Bals, A., Park, J., Lin, M.Y., Thomas, Hahn H.: Rapid prototyping of composite parts using resin-transfer moulding and laminated-object manufacturing. Compos. Part Appl. Sci. Manuf. 29(5–6), 651–661 (1998)

    Article  Google Scholar 

  80. Klosterman, D., Chartoff, R., Graves, G., Osborne, N., Priore, B.: Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos. Part. Appl. Sci. Manuf. 29(9–10), 1165–1174 (1998)

    Article  Google Scholar 

  81. Jackson, T.R., Liu, H., Patrikalakis, N.M., et al.: Modelling and designing functionally graded material components for fabrication with local composition control. Mater. Des. 20(2–3), 63–75 (1999)

    Article  Google Scholar 

  82. Dimitrov, D., Schreve, K., De Beer, N.: Advances in three-dimensional printing—state of the art and future perspectives. Rapid Prototyping J. 12(3), 136–147 (2006)

    Article  Google Scholar 

  83. Chartoff, R., McMorrow, B., Lucas, P.: Functionally Graded Polymer-Matrix Nano-Composites by Solid Freeform Fabrication: A Preliminary Report. In: Solid Freeform Fabrication Symposium Proceedings, Austin, Texas, pp. 385–391

    Google Scholar 

  84. Shevchenko, A.V., Dudnik, E.V., Ruban, A.K., et al.: Functional graded materials based on ZrO2 and Al2O3 production methods. Powder Metall. Met. Ceram. 42(3–4), 145–153 (2003)

    Article  Google Scholar 

  85. Wang, J., Shaw, L.L.: Fabrication of functionally graded materials via inkjet colour printing. J. Am. Ceram. Soc. 89(10), 3285–3289 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Johannesburg research council, the Department of Higher Education and Training (DHET) South Africa, the National Laser Centre Rental Pool Programme (RPP) contract number NLC - LREHA02-CON-001 and the L’Oreal-UNESCO for Women in Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasheedat Modupe Mahamood .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mahamood, R.M., Akinlabi, E.T. (2017). Additive Manufacturing of Funtionally Graded Materials. In: Functionally Graded Materials. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-53756-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53756-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53755-9

  • Online ISBN: 978-3-319-53756-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics