Skip to main content

Types of Functionally Graded Materials and Their Areas of Application

  • Chapter
  • First Online:

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

Abstract

Functionally graded materials (FGMs) are advanced composite materials that are used to solve a number of engineering problems, as well as in the biomedical implant applications for the replacement of human tissues. These materials are used to eliminate the stress singularities that occur, as a result of the property mismatch in the constituent materials in a composite. There are different types of FGMs that are used today, depending on the type of application, for which the material is intended. In this chapter, the different types of FGMs are presented. The areas of application of this novel material are also explained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Niino, M., Hirai, T., Watanabe, R.: The functionally gradient materials. J. Jpn. Soc. Compos. Mater. 13, 257–264 (1987)

    Article  Google Scholar 

  2. Report on. Fundamental study on relaxation of thermal stress for high-temperature material by tailoring the graded structure. In: Department of Science and Technology Agency (1992)

    Google Scholar 

  3. Dumont, A.-L., Bonnet, J.-P., Chartier, T., Ferreira, J.M.F.: MoSi2/Al2O3 FGM: elaboration by tape casting and SHS. J. Eur. Ceram. Soc. 21, 2353–2360 (2001)

    Article  Google Scholar 

  4. Saiyathibrahim, A., Mohamed, N.S.S., Dhanapal, P.: Processing techniques of functionally graded materials—a review. In: International Conference on Systems, Science, Control, Communication, Engineering and Technology, pp. 98–105 (2015)

    Google Scholar 

  5. Nemat-Alla, M.M., Ata, M.H., Bayoumi, M.R., Khair-Eldeen, W.: Powder metallurgical fabrication and microstructural investigations of aluminum/steel functionally graded material. Mater. Sci. Appl. 2, 1708–1718 (2011)

    Google Scholar 

  6. Jin, X., Wu, L., Sun, Y., Guo, L.: Microstructure and mechanical properties of ZrO2/NiCr functionally graded materials. Mater. Sci. Eng. A 509, 63–68 (2009)

    Article  Google Scholar 

  7. Wosko, M., Paszkiewicz, B., Piasecki, T., Szyszka, A., Paszkiewicz, R., Tlaczala, M.: Applications of functionally graded materials in opto-electronic devices. Optica Applicata 35(3), 663–667 (2005)

    Google Scholar 

  8. Bharti, I., Gupta, N., Gupta, K.M.: Novel applications of functionally graded nano, opto-electronic and thermo-electric materials. Int. J. Mater. Mech. Manuf. 1, 221–224 (2013)

    Google Scholar 

  9. Mahamood, R.M., Akinlabi, E.T.: Laser-metal deposition of functionally graded Ti6Al4V/TiC. Mater. Des. 84, 402–410 (2015)

    Google Scholar 

  10. Mahamood, R.M., Akinlabi, E.T., Shukla M., Pityana, S.: Functionally graded material: An overview. In: Proceedings of the world congress on engineering WCE 2012, vol. 3, pp. 1593–1597 (2012)

    Google Scholar 

  11. Mahamood, R.M., Akinlabi, E.T.: Modelling of process parameters influence on degree of porosity in laser-metal deposition process. In: Yang G-C et al. (eds) Transactions on Engineering Technologies. Springer, pp. 31–42 (2015)

    Google Scholar 

  12. Mia, X., Sun, D.: Graded/gradient porous biomaterials. Materials 3, 26–47 (2010). doi:10.3390/ma3010026

  13. Thieme, M., Wieters, K.P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., Kim, T.J., Grill, W.: Titanium-powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J. Mater. Sci. 12, 225–231 (2001)

    Google Scholar 

  14. Suk, M.J., Choi, S.I., Kim, J.S., Kim, Y.D., Kwon, Y.S.: Fabrication of a porous material with a porosity gradient by a pulsed electric-current sintering process. Met. Mater. Int. 9, 599–603 (2003)

    Article  Google Scholar 

  15. Woodfield, T.B.F., van Blitterswijk, C.A., de Wijn, J., Sims, T.J., Hollander, A.P., Riesle, J.: Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng. 11, 1297–1311 (2005)

    Article  Google Scholar 

  16. Oh, S.H., Park, I.K., Kim, J.M., Lee, J.H.: In vitro and in vivo characteristics of PCL scaffolds with pore-size gradients fabricated by a centrifugation method. Biomaterials 28, 1664–1671 (2007)

    Article  Google Scholar 

  17. Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., Franzese, S.: Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials 22, 1365–1370 (2001)

    Article  Google Scholar 

  18. Werner, J.P., Linner-Krcmar, B., Friess, W., Greil, P.: Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded-pore structure. Biomaterials 23, 4285–4294 (2002)

    Article  Google Scholar 

  19. Rodriguez-Lorenzo, L.M., Ferreira, J.M.F.: Development of porous ceramic bodies for applications in tissue engineering and drug-delivery systems. Mater. Res. Bull. 39, 83–91 (2004)

    Article  Google Scholar 

  20. Lu, W.W., Zhao, F., Luk, K.D.K., Yin, Y.J., Cheung, K.M.C., Cheng, G.X., Yao, K.D., Leong, J.C.Y.: Controllable porosity hydroxyapatite ceramics as a spine cage: fabrication and properties evaluation. J. Mater. Sci. 14, 1039–1046 (2003)

    Google Scholar 

  21. Lee, B.T., Kang, I.C., Gain, A.K., Kim, K.H., Song, H.Y.: Fabrication of pore-gradient Al2O3–ZrO2 sintered bodies by fibrous monolithic process. J. Eur. Ceram. Soc. 26, 3525–3530 (2006)

    Article  Google Scholar 

  22. Sherwood, J.K., Riley, S.L., Palazzolo, R., Brown, S.C., Monkhouse, D.C., Coates, M., Griffith, L.G., Landeen, L.K., Ratcliffe, A.: A three-dimensional osteo-chondral composite scaffold for articular cartilage repair. Biomaterials 23, 4739–4751 (2002)

    Article  Google Scholar 

  23. Chen, G., Sato, T., Tanaka, J., Tateishi, T.: Preparation of a biphasic scaffold for osteo-chondral tissue engineering. Mater. Sci. Eng. 26, 118–123 (2006)

    Article  Google Scholar 

  24. Rowe, J.R., Russell, H., Lare, P.J., Hahn, H.: Surgical implants having a graded porous coating. U.S. Patent No. 4542539 (1985)

    Google Scholar 

  25. Miao, X., Hu, Y., Liu, J., Tio, B., Cheang, P., Khor, K.A.: Highly interconnected and functionally graded porous bioceramics. Key Eng. Mater. 240–242, 595–598 (2003)

    Article  Google Scholar 

  26. Droschel, M., Hoffmann, M.J., Oberacker, R., Both, H.V., Schaller, W., Yang, Y.Y., Munz, D.: SiC-ceramics with tailored porosity gradients for combustion chambers. Key Eng. Mater. 175–176, 149–162 (2000)

    Article  Google Scholar 

  27. Cichocki Jr., F.R., Trumble, K.P., Rodel, J.: Tailored porosity gradients via colloidal infiltration of compression-moulded sponges. J. Amer. Ceram. Soc. 81, 1661–1664 (1998)

    Article  Google Scholar 

  28. Harley, B.A., Hastings, A.Z., Yannas, I.V., Sannino, A.: Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique. Biomaterials 27, 866–874 (2006)

    Article  Google Scholar 

  29. Bretcanu, O., Samaille, C., Boccaccini, A.R.: Simple methods to fabricate bioglass-derived glass-ceramic scaffolds exhibiting a porosity gradient. J. Mater. Sci. 43, 4127–4134 (2008)

    Article  Google Scholar 

  30. Li, R., Liu, J., Shi, Y., Du, M., Xie, Z.: 316L Stainless steel with gradient porosity fabricated by selective laser melting. J. Mater. Eng. Perform. 19(5), 666–671 (2010)

    Article  Google Scholar 

  31. Muthutantri, A., Huang, J., Edirisinghe, M.: Novel preparation of graded porous structures for medical engineering. J. R. Soc. Interface 5, 1459–1467 (2008)

    Article  Google Scholar 

  32. Macchetta, A., Turner, I.G., Bowen, C.R.: Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 5, 1319–1327 (2009)

    Article  Google Scholar 

  33. Hsu, Y.H., Turner, I.G., Miles, A.W.: Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J. Mater. Sci. Mater. Med. 18, 2251–2256 (2007)

    Article  Google Scholar 

  34. Schneider, M.J.: The Timken Company, and Madhu S. Chatterjee, bodycote introduction to surface hardening of steels. In: Dossett, J., Totten, G.E. (eds) ASM Handbook, Steel Heat-Treating Fundamentals and Processes, vol. 4 (2013)

    Google Scholar 

  35. Lu, L., Chekroun, M., Abraham, O., Maupin, V., Villain, G.: Mechanical properties estimation of functionally graded materials using surface waves recorded with a laser interferometer. NDT and E Int. 44(2), 169–177 (2011)

    Article  Google Scholar 

  36. Shumiya, H., Kato, K., Okubo, H.: Feasibility studies on FGMs (functionally graded materials) application for gas insulated equipment. In: IEEE Conference on Electrical Insulation and dielectric Phenomena, pp. 360–363 (2004)

    Google Scholar 

  37. Kato, K., Kurimoto, M., Shumiya, H., Adachi, H., Sakuma, S., Okubo, H.: Application of functionally graded material for solid insulator in gaseous-insulation systems. IEEE Trans. Dielectr. Electr. Insul. 13(2), 362–372 (2006)

    Article  Google Scholar 

  38. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G.: Functionally Graded Materials: Design, Processing and Applications. Kluwer Academic, Boston (1999)

    Book  Google Scholar 

  39. Miyamoto, Y.: The applications of functionally graded materials in Japan. Mater. Technol. 11(6), 230–236 (1996)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the University of Johannesburg Research Council, the Department of Higher Education and Training (DHET) South Africa, the National Laser Centre Rental Pool Programme (RPP) contract number NLC-LREHA02-CON-001 and L’Oreal-UNESCO For Women in Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasheedat Modupe Mahamood .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mahamood, R.M., Akinlabi, E.T. (2017). Types of Functionally Graded Materials and Their Areas of Application. In: Functionally Graded Materials. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-53756-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53756-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53755-9

  • Online ISBN: 978-3-319-53756-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics