Advertisement

Selection Support Framework Fostering Resilience Based on Neighbourhood Typologies

  • Laura KleerekoperEmail author
  • Jeroen Kluck
  • Andy van den Dobbelsteen
Chapter
  • 667 Downloads
Part of the Climate Change Management book series (CCM)

Abstract

Selecting climate adaptation measures through a straightforward approach: that is possible with the selection support framework presented in this paper. The framework results from Dutch urban design studies aiming to adapt to climate change. The framework includes adaptation measures for eight neighbourhood typologies on the scale of a street, square or building block. Numerous case studies provided input for the selection support framework. Based on this scientific work the framework provides an easy indication of climate adaptation opportunities, with focus on heat, and can be adapted to fit typical neighbourhoods in any country. The selection support framework enables urban professionals to select a set of climate adaptation solutions tailored to typical characteristics of a neighbourhood typology.

Keywords

Climate adaptation Case studies Integral design Urban microclimate Neighbourhood typologies 

Notes

Acknowledgements

As part of the research project of Climate Proof Cities, this study was funded by the governmental institute in The Netherlands, Knowledge for Climate program, supported by stakeholders, among which the cities of Rotterdam, The Hague, Amsterdam and Utrecht.

References

  1. ABF (2006) ABF Woonmilieutypologie. ABF Research BV, DelftGoogle Scholar
  2. Baeten J, Berg JJ, Betsky A, van Bergeijk H, Ibelings H, Kuipers M, Steenhuis M, de Vletter M, Teunissen M, Stissi V (2004) Gewoon architectuur 1850–2004. NAi, RotterdamGoogle Scholar
  3. Berghauser Pont MY, Haupt PA (2009) Spacematrix. Space, density and urban form. Delft University of TechnologyGoogle Scholar
  4. Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ Model Softw 13(3–4):373–384CrossRefGoogle Scholar
  5. de Jong TM, van der Voordt D (2002) Ways to study and research: urban, architectural and technical design. DUP Science, DelftGoogle Scholar
  6. Ellefsen R (1991) Mapping and measuring buildings in the canopy boundary layer in ten U.S. cities. Energy Build 16(3–4):1025–1049CrossRefGoogle Scholar
  7. Helmer M, Tijlhuis N (2015) Voetje voor voetje. Klimaatverbond NederlandGoogle Scholar
  8. Ibelings H (1999) Nederlandse stedenbouw van de 20ste eeuw. NAi, RotterdamGoogle Scholar
  9. Katzschner L (2010) Outdoor thermal comfort under consideration of global climate change and urban development strategies. Adapting to change: new thinking on comfort, Windsor, 9–11 April, Network for comfort and energy use in buildings, LondonGoogle Scholar
  10. Kikegawa Y, Genchi Y, Kondo H, Hanaki K (2006) Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning. Appl Energy 83(6):649–668CrossRefGoogle Scholar
  11. Kleerekoper L, van Esch M, Salcedo TB (2012) How to make a city climate-proof, addressing the urban heat island effect. Resour Conserv Recycl 64:30–38CrossRefGoogle Scholar
  12. Klok L, Kluck J (2015) Reasons to adapt to urban heat (in The Netherlands). In: ICUC9—9th international conference on urban climate jointly with 12th symposium on the urban environment, 20–24 July 2015, ToulouseGoogle Scholar
  13. Lenzholzer S (2015) Weather in the city. How design shapes the urban climate. nai010, RotterdamGoogle Scholar
  14. Lindberg F, Holmer B, Thorsson S (2008) SOLWEIG 1.0–modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int J Biometeorol 52(7):697–713CrossRefGoogle Scholar
  15. Lorzing H, Harbers A, Schluchter S (2008) Een stedenbouwkundige typologie. NAi, RotterdamGoogle Scholar
  16. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51(4):323–334CrossRefGoogle Scholar
  17. Middel G (2002) TOP 10 data set P1661. Topografische-Dienst, Data Archiving and Networked ServicesGoogle Scholar
  18. Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11(1–3):103–113CrossRefGoogle Scholar
  19. Pijpers-van Esch MME (2015) Designing the urban microclimate: a framework for a design-decision tool for the dissemination of knowledge on the urban microclimate to the urban design process. Delft University of Technology, TU DelftGoogle Scholar
  20. Pötz H, Bleuzé P (2012) Urban green-blue grids for sustainable and dynamic cities. Coop for Life, Delft, The NetherlandsGoogle Scholar
  21. Prins E, Bos R, Stam A, van den Berg R, Witteman B, Meijer F, Witsen PP, Fuchs P (2010) Rosetta-methode. Een gemeenschappelijke taal voor woonmilieus in de regioGoogle Scholar
  22. Rovers V et al (2014) Final report climate proof cities 2010–2014. URL: http://www.knowledgeforclimate.nl/urbanareas/climateproofcities_finalreport. Accessed on 07 Apr 2016
  23. Schrijvers PJC, Jonker HJJ, de Roode SR, Kenjereš S (2015) On the local day time urban heat island of an idealized 2D city. J Appl Meteorol 1–41Google Scholar
  24. Stelljes N (2015) A comparison of local adaptation strategies—results from a qualitative data analysis of nine coastal adaptation strategies. In: European climate change adaptation conference 2015, Copenhagen, Denmark, URL: http://www.ecologic.eu/sites/files/presentation/2015/stelljes_15-5-12_ecca.pdf. Accessed on 21 Apr 2016
  25. Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900CrossRefGoogle Scholar
  26. Tummers LJM, Tummers-Zuurmond JM (1997) Het land in de stad. THOTH, BussumGoogle Scholar
  27. van der Hoeven F, Wandl A (2013) Amsterwarm. Gebiedstypologie warmte-eiland Amsterdam, TU DelftGoogle Scholar
  28. Voogt JA, Oke TR (1997) Complete urban surface temperatures. J Appl Meteorol 36(9):1117–1132CrossRefGoogle Scholar
  29. Voskamp IM, van de Ven FHM (2015) Planning support system for climate adaptation: composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events. Build Environ 83:159–167Google Scholar
  30. Wassenberg F (1993) Ideeën voor naoorlogse wijken. Delftse Universitaire Pers, DelftGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Laura Kleerekoper
    • 1
    • 2
    Email author
  • Jeroen Kluck
    • 2
  • Andy van den Dobbelsteen
    • 1
  1. 1.Faculty of ArchitectureDelft University of TechnologyDelftThe Netherlands
  2. 2.Amsterdam University of Applied SciencesAmsterdamThe Netherlands

Personalised recommendations