Skip to main content

Genetic Influences on the Periodontal Microbial-Host Crosstalk

  • Chapter
  • First Online:
Pathogenesis of Periodontal Diseases
  • 1302 Accesses

Abstract

Previous chapters of this book have discussed the importance of subgingival microbial colonization and of the inflammatory-immune response as triggers of periodontal tissue breakdown. In fact, it appears clear that periodontal health or pathology is the result of the interaction between the human host and its invading microbes. Or perhaps we should not define them as ‘invading’, since it is well known that microbes not only coexist with their human host, but also provide multiple vital functions for the survival of the host itself [1]. Compelling evidence has now emerged to suggest that host genetic variants have a fundamental effect in regulating the host’s relationships with the microbial ‘guests’ and a better knowledge of how these effects are implemented is crucial in the understanding of disease processes. This chapter will review the evidence on the effect of host genetic factors on periodontal microbial colonization and will provide examples of how this could have an impact in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruby E, Henderson B, McFall-Ngai M. Microbiology—we get by with a little help from our (little) friends. Science. 2004;303:1305–7.

    Article  PubMed  Google Scholar 

  2. Gage KL, Kosoy MY. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol. 2005;50:505–28.

    Article  PubMed  Google Scholar 

  3. Galvani AP, Slatkin M. Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele. Proc Natl Acad Sci U S A. 2003;100:15276–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carrington M, Dean M, Martin MP, et al. Genetics of HIV-1 infection: chemokine receptor CCR5 polymorphism and its consequences. Hum Mol Genet. 1999;8:1939–45.

    Article  PubMed  Google Scholar 

  5. Duncan SR, Scott S, Duncan CJ. Reappraisal of the historical selective pressures for the CCR5-Delta 32 mutation. J Med Genet. 2005;42:205–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stephens JC, Reich DE, Goldstein DB, et al. Dating the origin of the CCR5-Delta 32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet. 1998;62:1507–15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marmor M, Sheppard HW, Donnell D, et al. Homozygous and heterozygous CCR5-Delta 32 genotypes are associated with resistance to HIV infection. J Acquir Immune Defic Syndr. 2001;27:472–81.

    Article  PubMed  Google Scholar 

  8. Lederman MM, Penn-Nicholson A, Cho M, et al. Biology of CCR5 and its role in HIV infection and treatment. J Am Med Assoc. 2006;296:815–26.

    Article  Google Scholar 

  9. Cooke GS, Hill AV. Genetics of susceptibility to human infectious disease. Nat Rev Genet. 2001;2:967–77.

    Article  PubMed  Google Scholar 

  10. Kellam P, Weiss RA. Infectogenomics: insights from the host genome into infectious diseases. Cell. 2006;124:695–7.

    Article  PubMed  Google Scholar 

  11. Nibali L, Henderson B, Sadiq ST, et al. Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases. J Oral Microbiol. 2014;6. doi: 10.3402/jom.v6.22962

  12. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    Article  PubMed  Google Scholar 

  13. Matsuki T, Watanabe K, Fujimoto J, et al. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol. 2004;70:167–73.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Girirajan S, Campbell CD, Eichler EE. Human copy number variation and complex genetic disease. Annu Rev Genet. 2011;45:203–26.

    Article  PubMed  Google Scholar 

  16. Fomin ME, Togarrati PP, Muench MO. Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost. 2014;12:1954–65.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006;124:823–35.

    Article  PubMed  Google Scholar 

  18. Inohara N, Chamaillard M, McDonald C, et al. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem. 2005;74:355–83.

    Article  PubMed  Google Scholar 

  19. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  PubMed  Google Scholar 

  20. Craven M, Egan CE, Dowd SE, et al. Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn’s disease. PLoS One. 2012;7:e41594.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104:13780.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Verstraelen H, Verhelst R, Nuytinck L, et al. Gene polymorphisms of Toll-like and related recognition receptors in relation to the vaginal carriage of Gardnerella vaginalis and Atopobium vaginae. J Reprod Immunol. 2009;79:163–73.

    Article  PubMed  Google Scholar 

  23. Genc MR, Vardhana S, Delaney ML, et al. Relationship between a toll-like receptor-4 gene polymorphism, bacterial vaginosis-related flora and vaginal cytokine responses in pregnant women. Eur J Obstet Gynecol Reprod Biol. 2004;116:152–6.

    Article  PubMed  Google Scholar 

  24. Hajishengallis G, Liang S, Payne MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;10:497–506.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nibali L, Donos N, Henderson B. Periodontal infectogenomics. J Med Microbiol. 2009;58:1269–74.

    Article  PubMed  Google Scholar 

  26. Haubek D, Ennibi OK, Poulsen K, et al. Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans in Morocco: a prospective longitudinal cohort study. Lancet. 2008;371:237–42.

    Article  PubMed  Google Scholar 

  27. Michalowicz BS, Diehl SR, Gunsolley JC, et al. Evidence of a substantial genetic basis for risk of adult periodontitis. J Periodontol. 2000;71:1699–707.

    Article  PubMed  Google Scholar 

  28. Laine ML, Crielaard W, Loos BG. Genetic susceptibility to periodontitis. Periodontol 2000. 2012;58:37–68.

    Article  PubMed  Google Scholar 

  29. Kornman KS, Crane A, Wang HY, et al. The interleukin-1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol. 1997;24:72–7.

    Article  PubMed  Google Scholar 

  30. Divaris K, Monda KL, North KE, et al. Exploring the genetic basis of chronic periodontitis: a genome-wide association study. Hum Mol Genet. 2013;22:2312–24.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schaefer AS, Bochenek G, Manke T, et al. Validation of reported genetic risk factors for periodontitis in a large-scale replication study. J Clin Periodontol. 2013;40:563–72.

    Article  PubMed  Google Scholar 

  32. Ikuta T, Inagaki Y, Tanaka K, et al. Gene polymorphism of beta-defensin-1 is associated with susceptibility to periodontitis in Japanese. Odontology. 2015;103:66–74.

    Article  PubMed  Google Scholar 

  33. Bochenek G, Hasler R, El Mokhtari NE, et al. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet. 2013;22:4516–27.

    Article  PubMed  Google Scholar 

  34. Durr M, Peschel A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect Immun. 2002;70:6515–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Loo WTY, Wang M, Jin LJ, et al. Association of matrix metalloproteinase (MMP-1, MMP-3 and MMP-9) and cyclooxygenase-2 gene polymorphisms and their proteins with chronic periodontitis. Arch Oral Biol. 2011;56:1081–90.

    Article  PubMed  Google Scholar 

  36. Sabat R, Grutz G, Warszawska K, et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010;21:331–44.

    Article  PubMed  Google Scholar 

  37. Socransky SS, Haffajee AD, Smith C, et al. Microbiological parameters associated with IL-1 gene polymorphisms in periodontitis patients. J Clin Periodontol. 2000;27:810–8.

    Article  PubMed  Google Scholar 

  38. Papapanou P, Neiderud AM, Sandros J, Dahlen G. Interleukin-1 gene polymorphism and periodontal status. A case-control study. J Clin Periodontol. 2001;28:389–96.

    Article  PubMed  Google Scholar 

  39. Nibali L, Ready DR, Parkar M, et al. Gene polymorphisms and the prevalence of key periodontal pathogens. J Dent Res. 2007;86:416–20.

    Article  PubMed  Google Scholar 

  40. Fife MS, Ogilvie EM, Kelberman D, et al. Novel IL-6 haplotypes and disease association. Genes Immun. 2005;6:367–70.

    Article  PubMed  Google Scholar 

  41. Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Investig. 1998;102:1369–76.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nibali L, Madden I, Franch Chillida F, Heitz-Mayfield L, Brett P, Donos N. -174 genotype associated with Aggregatibacter actinomycetemcomitans in Indians. Oral Dis. 2011;17(2):232–7.

    Google Scholar 

  43. Nibali L, D’Aiuto F, Ready D, Parkar M, Yahaya R, Donos N. No association between A actinomycetemcomitans or P gingivalis and chronic or aggressive periodontitis diagnosis. Quintessence Int. 2012;43(3):247–54.

    Google Scholar 

  44. Nibali L, Pelekos G, Habeeb R, et al. Influence of IL-6 haplotypes on clinical and inflammatory response in aggressive periodontitis. Clin Oral Investig. 2013;17:1235–42.

    PubMed  Google Scholar 

  45. Divaris K, Monda KL, North KE, et al. Genome-wide association study of periodontal pathogen colonization. J Dent Res. 2012;91:21S–8S.

    Article  PubMed  Google Scholar 

  46. Cavalla F, Biguettii CC, Colavite PM, et al. TBX21-1993T/C (rs4794067) polymorphism is associated with increased risk of chronic periodontitis and increased T-bet expression in periodontal lesions, but does not significantly impact the IFN-g transcriptional level or the pattern of periodontophatic bacterial infection. Virulence. 2015;6:293–304.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nibali L, Di Iorio A, Onabolu O, Lin G. Periodontal infectogenomics: systematic review of associations between host genetic variants and subgingival microbial detection. J Clin Periodontol. 2016;43(11):889–900.

    Article  PubMed  Google Scholar 

  48. Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246–52.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schaefer AS, Jochens A, Dommisch H, et al. A large candidate-gene association study suggests genetic variants at IRF5 and PRDM1 to be associated with aggressive periodontitis. J Clin Periodontol. 2014;41:1122–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Nibali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Nibali, L. (2018). Genetic Influences on the Periodontal Microbial-Host Crosstalk. In: Bostanci, N., Belibasakis, G. (eds) Pathogenesis of Periodontal Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-53737-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53737-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53735-1

  • Online ISBN: 978-3-319-53737-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics