Skip to main content

Bacterial Virulence Factors that Contribute to Periodontal Pathogenesis

  • Chapter
  • First Online:
Pathogenesis of Periodontal Diseases

Abstract

In this chapter, the role of different microbial virulence factors in relation to the pathogenesis of periodontal diseases is addressed. These factors are molecules produced by pathogens and contribute to their pathogenicity by promoting colonization and affecting host response. The importance of different virulence factors in the life of the oral biofilm and the interplay with the host’s response is exemplified here by two of the major, and most well studied, periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Both of these microbes have great genetic intraspecies diversity and express a number of different virulence factors, which have the capacity to cause imbalance in the host’s response. A. actinomycetemcomitans is the major pathogen in aggressive forms of periodontitis (Fig. 4.1) that affect young individuals, while P. gingivalis is frequently detected in periodontal pockets of individuals with the chronic forms of the disease (Fig. 4.2). However, the role of these two bacteria in periodontal breakdown is still not entirely clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Page RC, Kornman KS. The pathogenesis of human periodontitis: an introduction. Periodontol 2000. 1997;14:9–11.

    Article  PubMed  Google Scholar 

  2. Curtis MA, Zenobia C, Darveau D. The relationship of the oral microbiotia to periodontal health and disease. Cell Host Microbe. 2011;10:302–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000. 2015;68:7–17.

    Article  Google Scholar 

  4. Hajishengallis G, Darveau RP, Curtis MA. The keystone – pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–25.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, McIntosh ML, Alsam A, Kirkwood KL, Lambris JD, Darveau RP, Curtis M. Low abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;10:497–506.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–90.

    Article  PubMed  Google Scholar 

  7. Newman Dorland WA. Dorland’s medical dictionary for health consumers. Philadelphia, PA: Saunders; 2007.

    Google Scholar 

  8. Casadevall A, Pirofski L-A. Virulence factors and their mechanisms of action: the view from a damage –response framework. J Water Health. 2009;7:1–18.

    Article  Google Scholar 

  9. Marsh PD, Moter A, Devine DA. Dental plaque biofilms: communities, conflicts and control. Periodontol 2000. 2011;55:16–35.

    Article  PubMed  Google Scholar 

  10. Marsh PD. Are dental diseases examples of ecological catastrophes? Microbiology. 2003;149:279–94.

    Article  PubMed  Google Scholar 

  11. Marsh PD. Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health. 2006;6(Suppl 1):e14.

    Article  Google Scholar 

  12. Marsh PD. The commensal microbiota and the development of human disease – an introduction. J Oral Microbiol. 2015;7:e29128.

    Article  Google Scholar 

  13. Socransky SS, Haffajee AD, Cugini MA, Smith C, Ken RI Jr. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25:134–44.

    Article  PubMed  Google Scholar 

  14. Takahashi N. Oral microbiome metabolism from “who are they” to “what are they doing”. J Dent Res. 2015;94:1628–37.

    Article  PubMed  Google Scholar 

  15. Marsh PD, Devine DA. How is the development of dental biofilms influenced by the host? J Clin Periodontol. 2011;38(Suppl 11):28–35.

    Article  PubMed  Google Scholar 

  16. Attström R, Schröder HE. Effect of experimental neutropenia on initial gingivitis in dogs. Scand J Dent Res. 1979;87:7–23.

    PubMed  Google Scholar 

  17. Johansson A, Sandström G, Claesson R, Hänström L, Kalfas S. Anaerobic neutrophil-dependent killing of Actinobacillus actinomycetemcomitans in relation to the bacterial leukotoxicity. Eur J Oral Sci. 2000a;108:136–46.

    Article  PubMed  Google Scholar 

  18. Singh A. The capsule of Porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagoscytosis, and increase in virulence. Infect Immun. 2011;79:4533–42.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lina G, Piemont Y, Godall-Gamot F, Bes M, Peter M-O, Gaudochon V, et al. Involvment of Panton-valentine leukocidin-producing Staphylococcus aureus in primary skin infections nd pneumonia. Clin Infect Dis. 1999;29:1128–32.

    Article  PubMed  Google Scholar 

  20. Tadepalli S, Stewart GC, Nagaraja TG, Narayanan SK. Human Fusobacterium necrophorum strains have a leukotoxin gene and exhibit leukotoxic activity. J Med Microbiol. 2008;57:225–31.

    Article  PubMed  Google Scholar 

  21. Johansson A. Aggregatibacter actinomycetemcomitans leukotoxin: a powerful tool with capacity to cause imbalance in the host inflammatory response. Toxins. 2011;3:242–59.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kachlany SC. Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J Dent Res. 2010;89:561–70.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sundqvist G, Carlsson J, Herrmann B, Tärnvik A. Degradation of human immunoglobulins G and M and complement factors C3 and C5 by black-pigmented Bacteroides. J Med Microbiol. 1985;19:85–94.

    Article  PubMed  Google Scholar 

  24. Allenspach-Petrzilka GE, Guggenheim B. Bacterial invasion of the periodontium: an important factor in the pathogenesis of periondontitis? J Clin Periodontol. 1983;10:609–17.

    Article  PubMed  Google Scholar 

  25. Ji S, Choi YS, Choi Y. Bacteril invasion and persistence: critical events in the pathogenesis of periodontitis? J Periodontol Res. 2015;50:570–85.

    Article  Google Scholar 

  26. Tribble GD, Lamont RJ. Bacterial invasion of epithelial cells and spreading in periodontal tissue. Periodontol 2000. 2010;52:68–83.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Listgarten MA. Electron microscopic observations on the bacterail flora of acute nectrotizing ulcerative gingivitis. J Periodontol. 1965;36:328–39.

    Article  PubMed  Google Scholar 

  28. Listgarten MA. Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study. J Periodontol. 1976;47:1–18.

    Article  PubMed  Google Scholar 

  29. Berglundh T, Gislason O, Lekholm U, Sennerby L, Lindhe J. Histopathological observations of human peri-implantitis lesions. J Clin Periodontol. 2004;31:341–7.

    Article  PubMed  Google Scholar 

  30. Lux R, Miller JN, Perk NH, Shi W. Motility and chemotaxis in tissue penetration of oral epithelial cell layers by Treponema denticola. Infect Immun. 2001;69:6276–83.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Katz J, Yang QB, Zhang P, et al. Hydrolysis of epithelial junctional proteins by Porphyromonas gingivalis gingipains. Infect Immun. 2002;70:2512–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rudney JD, Chen R, Zhang G. Streptococci dominate the diverse flora within buccal cells. J Dent Res. 2005a;84:1185–71.

    Google Scholar 

  33. Rudney JD, Chen R, Sedgewick GI. Actinobacillus actinomycetemcomitans, Porphyromonas gongivalis and Tannerella forsythensis are components of a polymicrobial flora within human buccal cells. J Dent Res. 2005b;84:59–63.

    Article  PubMed  Google Scholar 

  34. Dibart S, Skobe Z, Snapp KR, Socransky SS, Smith CM, Kent R. Identification of bacterial species or in crevicular epithelial cells from healthy and periododntitis. Oral Microbiol Immunol. 1998;13:30–5.

    Article  PubMed  Google Scholar 

  35. Madianos PN, Papapanou PN, Nannmark U, Dahlen G, Sandros J. Porphyromonas gingivalis FDC381 multiplies and persists within human oral epithelial cells in vitro. Infect Immun. 1996;64:660–4.

    PubMed  PubMed Central  Google Scholar 

  36. Peterson JW. Chapter 7: Bacterial pathogenesis. In: Baron S, editor. Medical microbiology. 4th ed. Galveston, TX: Univesity of Texas Medical Branch; 1996.

    Google Scholar 

  37. Paramonov N, Aduse-Opoku J, Hashim A, Rangarajan M, Curtis MA. Identification of the linkage between A-polysaccharide and the core in the A-lipopolysaccharide of Porphyromonas gingivalis W50. J Bacteriol. 2015;197:1735–46.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xie H. Biogenesis and function of Porphyromonas gingivalis outer mebrane vesicles. Future Microbiol. 2015;10:1517–27.

    Article  PubMed  PubMed Central  Google Scholar 

  39. The Human Microbiome Project. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

    Article  Google Scholar 

  40. Könönen E, Kanervo A, Takala A, Asikainen S, Jousimies-Somer H. Establishment of oral anaerobes during the first year of life. J Dent Res. 1999;78:1634–9.

    Article  PubMed  Google Scholar 

  41. Könönen E. Oral colonization by anaerobic bacteria during childhood: role in health and disease. Oral Dis. 1999;5:276–85.

    Google Scholar 

  42. Darby I, Curtis M. Microbiology of periodontal disease in children and young adults. Periodontol 2000. 2001;26:33–53.

    Article  PubMed  Google Scholar 

  43. Tinoco EMB, Sivakumar M, Preus HR. The distribution and transmission of Actinobacillus actinomycetemcomitans in families with localized juvenile periodontitis. J Clin Periodontol. 1998;25:99–105.

    Article  PubMed  Google Scholar 

  44. Yue G, Kaplan JB, Furgang D, Mansfield KG, Fine DH. A second Aggregatibacter actinomycetemcomitans autotransporter adhesin exhibits specificity for buccal epithelial cells in humans and old world primates. Infect Immun. 2007;75:4440–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Teughels W, Kinder Haake S, Sliepen I, Pauwels M, Van Eldere J, Cassiman JJ, Quirynen M. Bacteria interfere with Actinobacillus actinomycetemcomitans colonization. J Dent Res. 2007;86:611–7.

    Article  PubMed  Google Scholar 

  46. Pahumunto N, Runangsi P, Wongsuwaniert M, Piwat S, Dahlen G, Teenpaisan R. Aggregatibacter actinomycetemcomitans serotypes and DGGE subtypes in Thai adults with chronic periodontitis. Arch Oral Biol. 2015;60:1789–96.

    Article  PubMed  Google Scholar 

  47. Van Winkelhoff AJ, Rijnsburger MC, van der Velden U. Clonal stability of Porphyromonas gingivalis in untreated periodontitis. J Clin Periodontol. 2008;35:674–9.

    Article  PubMed  Google Scholar 

  48. Kuboniwa M, Inaba H, Amano A. Genotyping to distinguish microbial pathogenicity in periodontitis. Periodontol 2000. 2010;54:136–59.

    Article  PubMed  Google Scholar 

  49. Anaya-Bergman C, Rosato A, Lewis JP. Iron- and hemin-dependent gene expression of Porphyromonas gingivalis. Mol Oral Microbiol. 2015;30:39–61.

    Article  PubMed  Google Scholar 

  50. Pahumunto N, Ruangsri P, Wongsuwanlert M, Piwat S, Dahlen G, Teanpaisan R. Virulence of Aggregatibacter actinomycetemcomitans serotypes and DGGE subtypes isolated from chronic adult periodontitis in Thailand. Anaerobe. 2015;36:60–4.

    Article  PubMed  Google Scholar 

  51. Socransky SS, Haffajee AD, Goodson JM, Lindhe J. New concepts of destructive periodontal disease. J Clin Periodontol. 1984;11:21–32.

    Article  PubMed  Google Scholar 

  52. Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol. 1992;63:322–31.

    Article  PubMed  Google Scholar 

  53. Hojo K, Nagaoka S, Ohshima T, Maeda N. Biofilm interaction in dental biofilm development. J Dent Res. 2009;88:982–90.

    Article  PubMed  Google Scholar 

  54. Slots J. Human viruses in periodontitis. Periodontol 2000. 2010;53:89–110.

    Article  PubMed  Google Scholar 

  55. Kinder Haake S, LeBlanc DJ. Chapter 7: Genetics and molecular biology of oral microorganisms. In: Lamont RJ, Burne RA, Lantz MS, LeBlanc DJ, editors. Oral microbiology and immunology. Washington, DC: ASM Press; 2006. p. 125–67.

    Google Scholar 

  56. Dahlén G. Microbiology and treatment of dental abscesses and periodontal-endodontic lesions. Periodontol 2000. 2002;28:206–39.

    Article  PubMed  Google Scholar 

  57. Ebersole JL, Kesavalu L, Schneider SL, Machen RL, Holt SC. Comparative virulence of periodontopathogens in a mouse model. Oral Dis. 1995;1:115–28.

    Article  PubMed  Google Scholar 

  58. Genco CA, Cutler CW, Kapczynski D, Maloney K, Arnold RR. A novel mouse model to study the virulence of and host response to Porphyromonas (Bacteroides) gingivalis. Infect Immun. 1991;59:1255–63.

    PubMed  PubMed Central  Google Scholar 

  59. Sundqvist G, Figdor D, Hänström L, Sörlin S, Sandström G. Phagocytosis and virulence of different strains of Porphyromonas gingivalis. Scand J Dent Res. 1991;99:117–29.

    PubMed  Google Scholar 

  60. Dahlén G, Fabricius L, Holm SE, Möller ÅJR. Interaction within a collection of eight bacterial strains isolated from a monkey dental root canal. Oral Microbiol Immunol. 1987;2:164–70.

    Article  PubMed  Google Scholar 

  61. Fabricius L, Dahlen G, Holm SE, Möller ÅJR. Influence of combinations of oral bacteria on the periapical tissues of monkeys. Scand J Dent Res. 1982;90:200–6.

    PubMed  Google Scholar 

  62. Charalampakis G, Dahlen G, Carlén A, Leonhardt Å. Bacterial markers vs clinical markers to predict progression of chronic periodontitis: a 2-yr prospective observational study. Eur J Oral Sci. 2013;121:394–402.

    Article  PubMed  Google Scholar 

  63. Lopez R, Dahlen G, Baelum V. Subgingival microbial consortia and the clinical features of periodontitis in adolescents. Eur J Oral Sci. 2011;119:455–62.

    Article  PubMed  Google Scholar 

  64. Perez-Chaparro PJ, Goncalves C, Figueiredo LC, Faveri M, Lobao E, Tamashiro N, Duarte P, Feres M. Newly identified pathogens associated with periodontitis: a systematic review. J Dent Res. 2014;93:846–58.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Curtis MA. Periodontal microbiology--the lid's off the box again. J Dent Res. 2014;93:840–2.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol. 2014;29:248–57.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000. 2010;54:78–105.

    Article  PubMed  Google Scholar 

  68. Albandar JM. Aggressive and acute periodontal diseases. Periodontol 2000. 2014;65:7–12.

    Article  PubMed  Google Scholar 

  69. Susin C, Haas AN, Albandar JM. Epidemiology and demographics of aggressive periodontitis. Periodontol 2000. 2014;65:27–45.

    Article  PubMed  Google Scholar 

  70. Åberg CH, Kwamin F, Claesson R, Dahlén G, Johansson A, Haubek D. Progression of attachment loss is strongly associated with presence of the JP2 genotype of Aggregatibacter actinomycetemcomitans: a prospective cohort study of a young adolescent population. J Clin Periodontol. 2014;41:232–41.

    Article  Google Scholar 

  71. Dahlén G, Claesson R, Aberg CH, Haubek D, Johansson A, Kwamin F. Subgingival bacteria in Ghanaian adolescents with or without progression of attachment loss. J Oral Microbiol. 2014;6:e23977.

    Article  Google Scholar 

  72. Fine DH, Markowitz K, Furgang D, Fairlie K, Ferrandiz J, Nasri C, McKiernan M, Gunsolley J. Aggregatibacter actinomycetemcomitans and its relationship to initiation of localized aggressive periodontitis: longitudinal cohort study of initially healthy adolescents. J Clin Microbiol. 2007;45:3859–69.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Haubek D, Ennibi OK, Poulsen K, Vaeth M, Poulsen S, Kilian M. Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans in Morocco: a prospective longitudinal cohort study. Lancet. 2007;371:237–42.

    Google Scholar 

  74. Monteiro MF, Casati MZ, Taiete T, do Vale HF, Nociti FH Jr, Sallum EA, Silvério KG, Casarin RC. Periodontal clinical and microbiological characteristics in healthy versus generalized aggressive periodontitis families. J Clin Periodontol. 2015;42(10):914–21. [Epub ahead of print]

    Article  Google Scholar 

  75. Könönen E, Müller HP. Microbiology of aggressive periodontitis. Periodontol 2000. 2014;65:46–78.

    Article  PubMed  Google Scholar 

  76. Nibali L, Donos N, Henderson B. Periodontal infectogenomics. J Med Microbiol. 2009;58:1269–74.

    Article  PubMed  Google Scholar 

  77. Paino A, Ahlstrand T, Nuutila J, Navickaite I, Lahti M, Tuominen H, Välimaa H, Lamminmäki U, Pöllänen MT, Ihalin R. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans. PLoS One. 2013;8:e70509.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nikolopoulos GK, Dimou NL, Hamodrakas SJ, Bagos PG. Cytokine gene polymorphisms in periodontal disease: a meta-analysis of 53 studies including 4178 cases and 4590 controls. J Clin Periodontol. 2008;35:754–67.

    Article  PubMed  Google Scholar 

  79. Kittichotirat W, Bumgarner RE, Asikainen S, Chen C. Identification of the pangenome and its components in 14 distinct Aggregatibacter actinomycetemcomitans strains by comparative genomic analysis. PLoS One. 2011;6:e22420.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kittichotirat W, Bumgarner RE, Chen C. Evolutionary Divergence of Aggregatibacter actinomycetemcomitans. J Dent Res. 2016;95(1):94–101. [Epub ahead of print]

    Article  PubMed  PubMed Central  Google Scholar 

  81. Brogan JM, Lally ET, Poulsen K, Kilian M, Demuth DR. Regulation of Actinobacillus actinomycetemcomitans leukotoxin expression: analysis of the promoter regions of leukotoxic and minimally leukotoxic strains. Infect Immun. 1994;62:501–18.

    PubMed  PubMed Central  Google Scholar 

  82. Claesson R, Gudmundson J, Åberg CH, Haubek D, Johansson A. Detection of a 640-bp deletion in the Aggregatibacter actinomycetemcomitans leukotoxin promoter region in isolates from an adolescent of Ethiopian origin. J Oral Microbiol. 2015;7:e26974.

    Article  Google Scholar 

  83. He T, Nishihara T, Demuth DR, Ishikawa I. A novel insertion sequence increases the expression of leukotoxicity in Actinobacillus actinomycetemcomitansclinical isolates. J Periodontol. 1999;70:1261–8.

    Article  PubMed  Google Scholar 

  84. Åberg CH, Kelk P, Johansson A. Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis. Virulence. 2015;6:188–95.

    Article  PubMed  Google Scholar 

  85. Wahasugui TC, Nakano V, Piazza RM, Avila-Campos MJ. Phenotypic and genotypic features of Aggregatibacter actinomycetemcomitans isolated from patients with periodontal disease. Diagn Microbiol Infect Dis. 2013;75:366–72.

    Article  PubMed  Google Scholar 

  86. Fine DH, Kaplan JB, Kachlany SC, Schreiner HC. How we got attached to Actinobacillus actinomycetemcomitans: a model for infectious diseases. Periodontol 2000. 2006;42:114–57.

    Article  PubMed  Google Scholar 

  87. Haubek D, Johansson A. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis. J Oral Microbiol. 2014;6:e23980.

    Article  Google Scholar 

  88. Höglund Åberg C, Haubek D, Kwamin F, Johansson A, Claesson R. Leukotoxic activity of Aggregatibacter actinomycetemcomitans and periodontal attachment loss. PLoS One. 2014;9:e104095.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kelk P, Claesson R, Hänström L, Lerner UH, Kalfas S, Johansson A. Abundant secretion of bioactive interleukin-1beta by human macrophages induced by Actinobacillus actinomycetemcomitans leukotoxin. Infect Immun. 2005;73:453–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Brage M, Holmlund A, Johansson A. Humoral immune response to Aggregatibacter actinomycetemcomitans leukotoxin. J Periodontal Res. 2011;46:170–5.

    Article  PubMed  Google Scholar 

  91. Johansson A, Claesson R, Belibasakis G, Makoveichuk E, Hänström L, Olivecrona G, Sandström G, Kalfas S. Protease inhibitors, the responsible components for the serum-dependent enhancement of Actinobacillus actinomycetemcomitans leukotoxicity. Eur J Oral Sci. 2001;109:335–41.

    Article  PubMed  Google Scholar 

  92. Johansson A, Claesson R, Hänström L, Kalfas S. Serum-mediated release of leukotoxin from the cell surface of the periodontal pathogen Actinobacillus actinomycetemcomitans. Eur J Oral Sci. 2003;111:209–15.

    Article  PubMed  Google Scholar 

  93. Kieselbach T, Zijnge V, Granström E, Oscarsson J. Proteomics of Aggregatibacter actinomycetemcomitans outer membrane vesicles. PLoS One. 2015;10:e0138591.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Peyyala R, Ebersole JL. Multispecies biofilms and host responses: “discriminating the trees from the forest”. Cytokine. 2013;61:15–25.

    Article  PubMed  Google Scholar 

  95. Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev. 2010;34:1076–112.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sugai M, Kawamoto T, Pérès SY, Ueno Y, Komatsuzawa H, Fujiwara T, Kurihara H, Suginaka H, Oswald E. The cell cycle-specific growth-inhibitory factor produced by Actinobacillus actinomycetemcomitans is a cytolethal distending toxin. Infect Immun. 1998;66:5008–19.

    PubMed  PubMed Central  Google Scholar 

  97. Grasso F, Frisan T. Bacterial Genotoxins: merging the DNA damage response into infection biology. Biomol Ther. 2015;5:1762–82.

    Google Scholar 

  98. Lara-Tejero M, Galán JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science. 2000;290:354–7.

    Article  PubMed  Google Scholar 

  99. Belibasakis GN, Mattson A, Wang Y, Chen C, Johansson A. Cell cycle arrest of human gingival fibroblasts and periodontal ligament cells by Actinobacillus actinomycetemcomitans: involvement of the cytolethal distending toxin. APMIS. 2004;112:674–85.

    Article  PubMed  Google Scholar 

  100. Shenker BJ, Besack D, McKay T, Pankoski L, Zekavat A, Demuth DR. Induction of cell cycle arrest in lymphocytes by Actinobacillus actinomycetemcomitans cytolethal distending toxin requires three subunits for maximum activity. J Immunol. 2005;174:2228–34.

    Article  PubMed  Google Scholar 

  101. Belibasakis GN, Brage M, Lagergård T, Johansson A. Cytolethal distending toxin upregulates RANKL expression in Jurkat T-cells. APMIS. 2008;116:499–506.

    Article  PubMed  Google Scholar 

  102. Belibasakis GN, Johansson A, Wang Y, Chen C, Kalfas S, Lerner UH. The cytolethal distending toxin induces receptor activator of NF-kappaB ligand expression in human gingival fibroblasts and periodontal ligament cells. Infect Immun. 2005a;73:342–51.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ando ES, De-Gennaro LA, Faveri M, Feres M, DiRienzo JM, Mayer MPA. Immune response to cytolethal distending toxin of Aggregatibacter actinomycetemcomitans in periodontitis patients. J Periodontal Res. 2010;45:471–80.

    PubMed  PubMed Central  Google Scholar 

  104. Höglund Åberg C, Antonoglou G, Haubek D, Kwamin F, Claesson R, Johansson A. Cytolethal distending toxin in isolates of Aggregatibacter actinomycetemcomitans from Ghanaian adolescents and association with serotype and disease progression. PLoS One. 2013;8:e65781.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Teng YT, Hu W. Expression cloning of a periodontitis-associated apoptotic effector, cagE homologue, in Actinobacillus actinomycetemcomitans. Biochem Biophys Res Commun. 2003;303:1086–94.

    Article  PubMed  Google Scholar 

  106. Teng YT, Zhang X. Apoptotic activity and sub-cellular localization of a T4SS-associated CagE-homologue in Actinobacillus actinomycetemcomitans. Microb Pathog. 2005;38:125–32.

    Article  PubMed  Google Scholar 

  107. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.

    Article  PubMed  Google Scholar 

  108. Díaz-Zúñiga J, Yáñez JP, Alvarez C, Melgar-Rodríguez S, Hernández M, Sanz M, Vernal R. Serotype-dependent response of human dendritic cells stimulated with Aggregatibacter actinomycetemcomitans. J Clin Periodontol. 2014;41:242–51.

    Article  PubMed  Google Scholar 

  109. Page RC, Sims TJ, Engel LD, Moncla BJ, Bainbridge B, Stray J, Darveau RP. The immunodominant outer membrane antigen of Actinobacillus actinomycetemcomitans is located in the serotype-specific high-molecular-mass carbohydrate moiety of lipopolysaccharide. Infect Immun. 1991;59:3451–62.

    PubMed  PubMed Central  Google Scholar 

  110. Belibasakis GN, Johansson A, Wang Y, Chen C, Lagergård T, Kalfas S, Lerner UH. Cytokine responses of human gingival fibroblasts to Actinobacillus actinomycetemcomitans cytolethal distending toxin. Cytokine. 2005b;30:56–63.

    Article  PubMed  Google Scholar 

  111. Kelk P, Claesson R, Chen C, Sjöstedt A, Johansson A. IL-1beta secretion induced by Aggregatibacter (Actinobacillus) actinomycetemcomitans is mainly caused by the leukotoxin. Int J Med Microbiol. 2008;298:529–41.

    Article  PubMed  Google Scholar 

  112. Belibasakis G, Johansson A. Aggregatibacter actinomycetemcomitans targets NLRP3 and NLRP6 inflammasome expression in human mononuclear leukocytes. Cytokine. 2012;59:124–30.

    Article  PubMed  Google Scholar 

  113. Mysak J, Podzimek S, Sommerova P, Lyuya-Mi Y, Bartova J, Janatova T, Prochazkova J, Duskova J. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res. 2014;2014:e476068.

    Article  Google Scholar 

  114. Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012;333:1–9.

    Article  PubMed  Google Scholar 

  115. Cortelli JR, Aquino DR, Cortelli SC, Fernandes CB, de Carvalho-Filho J, Franco GC, Costa FO, Kawai T. Etiological analysis of initial colonization of periodontal pathogens in oral cavity. J Clin Microbiol. 2008;46:1322–9.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Loos BG, Dyer DW. Restriction fragment length polymorphism analysis of the fimbrillin locus, fimA of Porphyromonas gingivalis. J Dent Res. 1992;71:1173–81.

    Article  PubMed  Google Scholar 

  117. Amano A, Kuboniwa M, Nakagawa I, Akiyama S, Morisaki I, Hamada S. Prevalence of specific genotypes of Porphyromonas gingivalis fimA and periodontal health status. J Dent Res. 2000;79:1664–8.

    Article  PubMed  Google Scholar 

  118. Jotwani R, Cutler CW. Fimbriated Porphyromonas gingivalis is more efficient than fimbria-deficient P. gingivalis in entering human dendritic cells in vitro and induces an inflammatory Th1 effector response. Infect Immun. 2004;72:1725–32.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wang M, Liang S, Hosur KB, Domon H, Yoshimura F, Amano A, Hajishengallis G. Differential virulence and innate immune interaction of type 1 and II fimbrial genotypes of Porphyromonas gingivalis. Oral Microbiol Immunol. 2009;24:478–84.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Laine ML, Appelmelk BJ, van Winkelhoff AJ. Prevalence and distribution of six capsular serotypes of Porphyromonas gingivalis in periodontitis patients. J Den Res. 1997;76:1840–4.

    Article  Google Scholar 

  121. Yoshino T, Laine M, van Winkelhoff AJ, Dahlen G. Genotype variation and capsular serotypes of Porphyromonas gingivlis from chronic periodontitis and periodontal abscesses. FEMS Microbiol Lett. 2007;270:75–81.

    Article  PubMed  Google Scholar 

  122. Diericks K, Pauweis M, Laine ML, van Eldere J, Cassiman JJ, van Winkelhoff AJ, Van Steenberghe D, Quirynen M. Adhesion of Porphyromonas gingivalis serotypes to pocket epithelium. J Periodontol. 2003;73:844–8.

    Article  Google Scholar 

  123. Guo Y, Nguyen K-A, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontol 2000. 2010;54:15–44.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Potempa J, Sroka A, Imamura T, Travis J. Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas gingivalis: structure, function and assembly of multidomain protein complexes. Curr Protein Pept Sci. 2003;4:397–407.

    Article  PubMed  Google Scholar 

  125. Haraguchi A, Miura M, Fujise O, Hamachi T, Nishimura F. Porphyromonas gingivalis gingipain is involved in the detachment and aggregation of Aggregatibacter actinomycetemcomitans biofilm. Mol Oral Microbiol. 2014;29:131–43.

    Article  PubMed  Google Scholar 

  126. Johansson A, Hänström L, Kalfas S. Inhibition of Actinobacillus actinomycetemcomitans leukotoxicity by bacteria from the subgingival flora. Oral Microbiol Immunol. 2000b;15:218–25.

    Article  PubMed  Google Scholar 

  127. Olsen I, Potempa J. Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases. J Oral Microbiol. 2014;6:e24800.

    Article  Google Scholar 

  128. McGraw WT, Potempa J, Farley D, Travis J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect Immun. 1999;67:3248–56.

    PubMed  PubMed Central  Google Scholar 

  129. Wegner N, Wait R, Sroka A, Eick S, Nguyen KA, Lundberg K, Kinloch A, Culshaw S, Potempa J, Venables PJ. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010;62:2662–72.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rantapää-Dahlqvist S, de Jong BA, Berglin E, Hallmans G, Wadell G, Stenlund H, Sundin U, van Venrooij WJ. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 2003;48:2741–9.

    Article  PubMed  Google Scholar 

  131. Mangat P, Wegner N, Venables PJ, Potempa J. Bacterial and human peptidylarginine deiminases: targets for inhibiting the autoimmune response in rheumatoid arthritis? Arthritis Res Ther. 2010;12:e209.

    Article  Google Scholar 

  132. Gully N, Bright R, Marino V, Marchant C, Cantley M, Haynes D, Butler C, Dashper S, Reynolds E, Bartold M. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis. PLoS One. 2014;9:e100838.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Maresz KJ, Hellvard A, Sroka A, Adamowicz K, Bielecka E, Koziel J, Koziel J, Gawron K, Mizgalska D, Marcinska KA, Benedyk M, Pyrc K, Quirke A-M, Jonsson R, Alzabin S, Venables PJ, Nguyen K-A, Mydel P, Potempa J. Porphyromonas gingivalis facilitates the development and progression of destructive arthritis through its unique bacterial peptidylarginine deiminase (PAD). PLoS Pathog. 2013;9:e1003627.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hajishengallis G, Wang M, Bagby GJ, Nelson S. Importance of TLR2 in early innate immune response to acute pulmonary infection with Porphyromonas gingivalis in mice. J Immunol. 2008;181:4141–9.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bougas K, Ransjö M, Johansson A. Effects of Porphyromonas gingivalis surface-associated material on osteoclast formation. Odontology. 2013;101:140–9.

    Article  PubMed  Google Scholar 

  136. Kassem A, Henning P, Lundberg P, Souza PP, Lindholm C, Lerner UH. Porphyromonas gingivalis stimulates bone resorption by enhancing RANKL (receptor activator of NF-κB ligand) through activation of toll-like receptor 2 in osteoblasts. J Biol Chem. 2015;290:20147–58.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Johansson, A., Dahlén, G. (2018). Bacterial Virulence Factors that Contribute to Periodontal Pathogenesis. In: Bostanci, N., Belibasakis, G. (eds) Pathogenesis of Periodontal Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-53737-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53737-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53735-1

  • Online ISBN: 978-3-319-53737-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics