Skip to main content

Subgingival Biofilms as Etiological Factors of Periodontal Disease

  • Chapter
  • First Online:

Abstract

A biofilm is a structured community of microbial cells embedded in a self-produced (hydrated) matrix extracellular polymeric substance (EPS) and adherent to an inert or living surface, as defined by Costerton [1] and modified in 2012 by IUPAC [2]. Microbial cells growing in a biofilm differ physiologically from planktonic cells of the same organism, which are swimming or floating single cells in a liquid medium. Although the fact that microorganisms are able to grow attached to solid surfaces was reported already in 1936 by Zobell [3], it took more than 40 years until it was recognized that in nature most bacteria grow in biofilms attached to a surface rather than growing planktonically [1, 4]. A cell switching to the biofilm mode of growth undergoes a phenotypic shift in behavior with many genes being differentially regulated [5]. Biofilms may be formed in response to factors such as recognition of attachment sites on a surface, nutritional signals, or protection from harmful conditions [6–8]. Living in a biofilm represents a universal survival strategy of microorganisms on our planet. It allows microorganisms to colonize new ecological niches and survive in hostile environments thereby adopting biofilm structure in response to environmental conditions [9, 10]. The dense and perplexed structure of a biofilm not only hampers diffusion of molecules, but it also forms a barrier against the host’s defense mechanisms such as antibodies, lysozyme, or against other antimicrobial agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45.

    Article  PubMed  Google Scholar 

  2. Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F. Terminology for biorelated polymers and applications. Pure Appl Chem. 2012;84:377–410.

    Article  Google Scholar 

  3. Zobell CE, Anderson DQ. Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biol Bull. 1936;71:324.

    Article  Google Scholar 

  4. Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am. 1978;238:86–95.

    Article  PubMed  Google Scholar 

  5. Khemiri A, Jouenne T, Cosette P. Proteomics dedicated to biofilmology: what have we learned from a decade of research. Med Microbiol Immunol. 2015;205(1):1–19.

    Article  PubMed  Google Scholar 

  6. Jefferson KK. What drives bacteria to produce a biofilm? FEMS Microbiol Lett. 2004;236:163–73.

    Article  PubMed  Google Scholar 

  7. Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73:310–47.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM. Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol. 1998;85(Suppl 1):19S–28S.

    Article  PubMed  Google Scholar 

  9. Bowden GH, Hamilton IR. Survival of oral bacteria. Crit Rev Oral Biol Med. 1998;9:54–85.

    Article  PubMed  Google Scholar 

  10. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95–108.

    Article  PubMed  Google Scholar 

  11. Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Factories. 2016;15:165.

    Article  Google Scholar 

  12. Monds RD, O’Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 2009;17:73–87.

    Article  PubMed  Google Scholar 

  13. Bos R, van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev. 1999;23:179–230.

    Article  PubMed  Google Scholar 

  14. Hojo K, Nagaoka S, Ohshima T, Maeda N. Bacterial interactions in dental biofilm development. J Dent Res. 2009;88:982–90.

    Article  PubMed  Google Scholar 

  15. West SA, Winzer K, Gardner A, Diggle SP. Quorum sensing and the confusion about diffusion. Trends Microbiol. 2012;20:586–94.

    Article  PubMed  Google Scholar 

  16. Gonzalez JE, Keshavan ND. Messing with bacterial quorum sensing. Microbiol Mol Biol Rev. 2006;70:859–75.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.

    PubMed  Google Scholar 

  18. Yang L, Liu Y, Wu H, Song Z, Hoiby N, Molin S, Givskov M. Combating biofilms. FEMS Immunol Med Microbiol. 2012;65:146–57.

    Article  PubMed  Google Scholar 

  19. Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol. 2008;74:470–6.

    Article  PubMed  Google Scholar 

  20. Manuel SG, Ragunath C, Sait HB, Izano EA, Kaplan JB, Ramasubbu N. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. FEBS J. 2007;274:5987–99.

    Article  PubMed  Google Scholar 

  21. Izano EA, Sadovskaya I, Wang H, Vinogradov E, Ragunath C, Ramasubbu N, Jabbouri S, Perry MB, Kaplan JB. Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans. Microb Pathog. 2008;44:52–60.

    Article  PubMed  Google Scholar 

  22. Marsh PD. Are dental diseases examples of ecological catastrophes? Microbiology. 2003;149:279–94.

    Article  PubMed  Google Scholar 

  23. Moore WEC, Moore LVH. The bacteria of periodontal diseases. Periodontol 2000. 1994;5:66–77.

    Article  PubMed  Google Scholar 

  24. Kolenbrander PE, London J. Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol. 1993;175:3247–52.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr. Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66:486–505.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marsh PD. Role of the oral microflora in health. Microb Ecol Health Dis. 2000;12:130–7.

    Article  Google Scholar 

  27. Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000. 2005;38:135–87.

    Article  PubMed  Google Scholar 

  28. Listgarten MA, Levin S. Positive correlation between the proportions of subgingival spirochetes and motile bacteria and susceptibility of human subjects to periodontal deterioration. J Clin Periodontol. 1981;8:122–38.

    Article  PubMed  Google Scholar 

  29. Listgarten MA, Levin S, Schifter CC, Sullivan P, Evian CI, Rosenberg ES. Comparative differential dark-field microscopy of subgingival bacteria from tooth surfaces with recent evidence of recurring periodontitis and from nonaffected surfaces. J Periodontol. 1984;55:398–401.

    Article  PubMed  Google Scholar 

  30. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RLJ. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25:134–44.

    Article  PubMed  Google Scholar 

  31. Roberts FA, Darveau RP. Beneficial bacteria of the periodontium. Periodontol 2000. 2002;30:40–50.

    Article  PubMed  Google Scholar 

  32. Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol 2000. 2015;69:18–27.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721–32.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lourenço TG, Heller D, Silva-Boghossian CM, Cotton SL, Paster BJ, Colombo AP. Microbial signature profiles of periodontally healthy and diseased patients. J Clin Periodontol. 2014;41:1027–36.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marsh PD. Dental plaque as a microbial biofilm. Caries Res. 2004;38:204–11.

    Article  PubMed  Google Scholar 

  36. Zijnge V, Ammann T, Thurnheer T, Gmur R. Subgingival biofilm structure. Front Oral Biol. 2012;15:1–16.

    PubMed  Google Scholar 

  37. Perez-Chaparro PJ, Goncalves C, Figueiredo LC, Faveri M, Lobao E, Tamashiro N, Duarte P, Feres M. Newly identified pathogens associated with periodontitis: a systematic review. J Dent Res. 2014;93:846–58.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol. 2005;43:3944–55.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ehrmann M, Ludwig W, Schleifer KH. Species specific oligonucleotide probe for the identification of Streptococcus thermophilus. System Appl Microbiol. 1992;15:453–5.

    Article  Google Scholar 

  40. Vlachojannis C, Dye BA, Herrera-Abreu M, Pikdoken L, Lerche-Sehm J, Pretzl B, Celenti R, Papapanou PN. Determinants of serum IgG responses to periodontal bacteria in a nationally representative sample of US adults. J Clin Periodontol. 2010;37:685–96.

    PubMed  Google Scholar 

  41. Blome B, Braun A, Sobarzo V, Jepsen S. Molecular identification and quantification of bacteria from endodontic infections using real-time polymerase chain reaction. Oral Microbiol Immunol. 2008;23:384–90.

    Article  PubMed  Google Scholar 

  42. Wang J, Qi J, Zhao H, He S, Zhang Y, Wei S, Zhao F. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci Rep. 2013;3:1843.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shi B, Chang M, Martin J, Mitreva M, Lux R, Klokkevold P, Sodergren E, Weinstock GM, Haake SK, Li H. Dynamic changes in the subgingival microbiome and their potential for diagnosis and prognosis of periodontitis. MBio. 2015;6:e01926-14.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kumar PS, Leys EJ, Bryk JM, Martinez FJ, Moeschberger ML, Griffen AL. Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. J Clin Microbiol. 2006;44:3665–73.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, ten Cate JM, Crielaard W. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res. 2008;87:1016–20.

    Article  PubMed  Google Scholar 

  46. Jenkinson HF. Beyond the oral microbiome. Environ Microbiol. 2011;13:3077–87.

    Article  PubMed  Google Scholar 

  47. Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, Gibbons TR, Treangen TJ, Chang YC, Li S, Stine OC, Hasturk H, Kasif S, Segre D, Pop M, Amar S. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One. 2012;7:e37919.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen H, Liu Y, Zhang M, Wang G, Qi Z, Bridgewater L, Zhao L, Tang Z, Pang X. A Filifactor alocis-centered co-occurrence group associates with periodontitis across different oral habitats. Sci Rep. 2015;5:9053.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ. New bacterial species associated with chronic periodontitis. J Dent Res. 2003;82:338–44.

    Article  PubMed  Google Scholar 

  50. Edlund A, Santiago-Rodriguez TM, Boehm TK, Pride DT. Bacteriophage and their potential roles in the human oral cavity. J Oral Microbiol. 2015;7:27423.

    Article  PubMed  Google Scholar 

  51. Ly M, Abeles SR, Boehm TK, Robles-Sikisaka R, Naidu M, Santiago-Rodriguez T, Pride DT. Altered oral viral ecology in association with periodontal disease. MBio. 2014;5:e01133-14.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tsai CY, Tang CY, Tan TS, Chen KH, Liao KH, Liou ML. Subgingival microbiota in individuals with severe chronic periodontitis. J Microbiol Immunol Infect. 2016; doi:10.1016/j.jmii.2016.04.007.

  53. Ge X, Rodriguez R, Trinh M, Gunsolley J, Xu P. Oral microbiome of deep and shallow dental pockets in chronic periodontitis. PLoS One. 2013;8:e65520.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huang S, Yang F, Zeng X, Chen J, Li R, Wen T, Li C, Wei W, Liu J, Chen L, Davis C, Xu J. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis. BMC Oral Health. 2011;11:33.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Junemann S, Prior K, Szczepanowski R, Harks I, Ehmke B, Goesmann A, Stoye J, Harmsen D. Bacterial community shift in treated periodontitis patients revealed by ion torrent 16S rRNA gene amplicon sequencing. PLoS One. 2012;7:e41606.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bizzarro S, Laine ML, Buijs MJ, Brandt BW, Crielaard W, Loos BG, Zaura E. Microbial profiles at baseline and not the use of antibiotics determine the clinical outcome of the treatment of chronic periodontitis. Sci Rep. 2016;6:20205.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Preisig E, Schroeder HE. Long-term culture of human periodontal ligament cells with autologous root discs. J Periodont Res. 1988;23(3):211–21.

    Article  PubMed  Google Scholar 

  58. Paropkari AD, Leblebicioglu B, Christian LM, Kumar PS. Smoking, pregnancy and the subgingival microbiome. Sci Rep. 2016;6:30388.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Joshi V, Matthews C, Aspiras M, de Jager M, Ward M, Kumar P. Smoking decreases structural and functional resilience in the subgingival ecosystem. J Clin Periodontol. 2014;41:1037–47.

    Article  PubMed  Google Scholar 

  60. Bizzarro S, Loos BG, Laine ML, Crielaard W, Zaura E. Subgingival microbiome in smokers and non-smokers in periodontitis: an exploratory study using traditional targeted techniques and a next-generation sequencing. J Clin Periodontol. 2013;40:483–92.

    Article  PubMed  Google Scholar 

  61. Ammann T. Advancement and structural analysis of a subgingival biofilm model system, Ph.D. thesis. Zürich; 2013.

    Google Scholar 

  62. Guggenheim B, Giertsen E, Schüpbach P, Shapiro S. Validation of an in vitro biofilm model of supragingival plaque. J Dent Res. 2001;80:363–70.

    Article  PubMed  Google Scholar 

  63. Shapiro S, Giertsen E, Guggenheim B. An in vitro oral biofilm model for comparing the efficacy of antimicrobial mouthrinses. Caries Res. 2002;36:93–100.

    Article  PubMed  Google Scholar 

  64. Guggenheim M, Shapiro S, Gmür R, Guggenheim B. Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl Environ Microbiol. 2001;67:1343–50.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guggenheim B, Guggenheim M, Gmür R, Giertsen E, Thurnheer T. Application of the Zürich biofilm model to problems of cariology. Caries Res. 2004;38:212–22.

    Article  PubMed  Google Scholar 

  66. Guggenheim B, Gmur R, Galicia JC, Stathopoulou PG, Benakanakere MR, Meier A, Thurnheer T, Kinane DF. In vitro modeling of host-parasite interactions: the ‘subgingival’ biofilm challenge of primary human epithelial cells. BMC Microbiol. 2009;9:280.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ammann TW, Belibasakis GN, Thurnheer T. Impact of early colonizers on in vitro subgingival biofilm formation. PLoS One. 2013;8(12):e83090.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ammann TW, Gmur R, Thurnheer T. Advancement of the 10-species subgingival Zurich biofilm model by examining different nutritional conditions and defining the structure of the in vitro biofilms. BMC Microbiol. 2012;12:227.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ammann TW, Bostanci N, Belibasakis GN, Thurnheer T. Validation of a quantitative real-time PCR assay and comparison with fluorescence microscopy and selective agar plate counting for species-specific quantification of an in vitro subgingival biofilm model. J Periodontal Res. 2013;48:517–26.

    Article  PubMed  Google Scholar 

  70. Thurnheer T, Belibasakis GN, Bostanci N. Colonisation of gingival epithelia by subgingival biofilms in vitro: role of “red complex” bacteria. Arch Oral Biol. 2014;59:977–86.

    Article  PubMed  Google Scholar 

  71. Thurnheer T, Bostanci N, Belibasakis GN. Microbial dynamics during conversion from supragingival to subgingival biofilms in an in vitro model. Mol Oral Microbiol. 2016;31:125–35.

    Article  PubMed  Google Scholar 

  72. Belibasakis GN, Kast JI, Thurnheer T, Akdis CA, Bostanci N. The expression of gingival epithelial junctions in response to subgingival biofilms. Virulence. 2015;6:704–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bostanci N, Bao K, Wahlander A, Grossmann J, Thurnheer T, Belibasakis GN. Secretome of gingival epithelium in response to subgingival biofilms. Mol Oral Microbiol. 2015;30:323–35.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Thurnheer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Thurnheer, T., Bao, K., Belibasakis, G.N. (2018). Subgingival Biofilms as Etiological Factors of Periodontal Disease. In: Bostanci, N., Belibasakis, G. (eds) Pathogenesis of Periodontal Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-53737-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53737-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53735-1

  • Online ISBN: 978-3-319-53737-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics