Advertisement

On the Computational Power of Affine Automata

  • Mika HirvensaloEmail author
  • Etienne MoutotEmail author
  • Abuzer YakaryılmazEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10168)

Abstract

We investigate the computational power of affine automata (AfAs) introduced in [4]. In particular, we present a simpler proof for how to change the cutpoint for any affine language and a method how to reduce error in bounded error case. Moreover, we address to the question of [4] by showing that any affine language can be recognized by an AfA with certain limitation on the entries of affine states and transition matrices. Lastly, we present the first languages shown to be not recognized by AfAs with bounded-error.

Keywords

Non-classical models of automata Affine automata Cutpoint languages Bounded error Compact sets Error reduction 

References

  1. 1.
    Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theor. Comput. Syst. 39(1), 165–188 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambainis, A., Yakaryılmaz, A.: Automata: from mathematics to applications. Automata Quantum Comput., to appear. arXiv:1507.01988
  3. 3.
    Belovs, A., Montoya, J.A., Yakaryılmaz, A.: Can one quantum bit separate any pair of words with zero-error? Technical report. arXiv:1602.07967 (2016)
  4. 4.
    Díaz-Caro, A., Yakaryılmaz, A.: Affine computation and affine automaton. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 146–160. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-34171-2_11. arXiv:1602.04732 Google Scholar
  5. 5.
    Jeandel, E.: Topological automata. Theor. Comput. Syst. 40(4), 397–407 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS 1997, pp. 66–75 (1997)Google Scholar
  7. 7.
    Li, L., Qiu, D., Zou, X., Li, L., Wu, L., Mateus, P.: Characterizations of one-way general quantum finite automata. Theoret. Comput. Sci. 419, 73–91 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)zbMATHGoogle Scholar
  9. 9.
    Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–243 (1963)CrossRefzbMATHGoogle Scholar
  10. 10.
    Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning, Boston (2013)zbMATHGoogle Scholar
  11. 11.
    Turakainen, P.: Generalized automata and stochastic languages. Proc. Am. Math. Soc. 21, 303–309 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Turakainen, P.: On nonstochastic languages and homomorphic images of stochastic languages. Inf. Sci. 24(3), 229–253 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of affine automata. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 116–129. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-41312-9_10 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
  2. 2.LIP, ENS de Lyon – CNRS – INRIA – UCBL – Université de LyonÉcole Normale Supérieure de LyonLyonFrance
  3. 3.Faculty of ComputingUniversity of LatviaRigaLatvia
  4. 4.Turku Centre for Computer Science (TUCS)TurkuFinland

Personalised recommendations