Advertisement

Finding DFAs with Maximal Shortest Synchronizing Word Length

  • Henk Don
  • Hans ZantemaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10168)

Abstract

It was conjectured by Černý in 1964 that a synchronizing DFA on n states always has a shortest synchronizing word of length at most \((n-1)^2\), and he gave a sequence of DFAs for which this bound is reached. In 2006 Trahtman conjectured that apart from Černý’s sequence only 8 DFAs exist attaining the bound. He gave an investigation of all DFAs up to certain size for which the bound is reached, and which do not contain other synchronizing DFAs. Here we extend this analysis in two ways: we drop this latter condition, and we drop limits on alphabet size. For \(n \le 4\) we do the full analysis yielding 19 new DFAs with smallest synchronizing word length \((n-1)^2\), refuting Trahtman’s conjecture. All these new DFAs are extensions of DFAs that were known before. For \(n \ge 5\) we prove that none of the DFAs in Trahtman’s analysis can be extended similarly. In particular, as a main result we prove that the Černý examples \(C_n\) do not admit non-trivial extensions keeping the same smallest synchronizing word length \((n-1)^2\).

Keywords

Regular Expression Computer Support Full Characterization Short Path Length Computer Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Almeida, J., Margolis, S., Steinberg, B., Volkov, M.: Representation theory of finite semigroups, semigroup radicals and formal language theory. Trans. Am. Math. Soc. 361, 1429–1461 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Béal, M.P., Berlinkov, M., Perrin, D.: A quadratic upper bound on the size of a synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci. 22, 277–288 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    de Bondt, M.: Personal communication, December 2016Google Scholar
  4. 4.
    Černy, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny časopis, Slovensk. Akad. Vied 14(3), 208–216 (1964)Google Scholar
  5. 5.
    Černy, J., Piricka, A., Rosenauerova, B.: On directable automata. Kybernetika 7(4), 289–298 (1971)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Don, H.: The Černý conjecture and \(1\)-contracting automata. Electron. J. Comb. 23(3), P3.12 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Don, H., Zantema, H.: Finding DFAs with maximal shortest synchronizing word length (2016). http://arxiv.org/abs/1609.06853
  8. 8.
    Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Inform. Theor. Appl. 32, 21–34 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dutertre, B., de Moura, L.: Yices: an SMT solver. http://yices.csl.sri.com/
  10. 10.
    Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125–127 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kari, J.: A counterexample to a conjecture concerning synchronizing word in finite automata. EATCS Bull. 73, 146–147 (2001)zbMATHGoogle Scholar
  12. 12.
    Pin, J.E.: On two combinatorial problems arising from automata theory. Ann. Discret. Math. 17, 535–548 (1983)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Roman, A.: A note on Černy conjecture for automata with 3-letter alphabet. J. Automata Lang. Comb. 13(2), 141–143 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Starke, P.: Eine bemerkung über homogene experimente. Elektronische Informationverarbeitung und Kybernetik 2, 257–259 (1966)zbMATHGoogle Scholar
  15. 15.
    Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theoret. Comput. Sci. 412(39), 5487–5491 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples concerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceTU EindhovenEindhovenThe Netherlands
  2. 2.Radboud University NijmegenNijmegenThe Netherlands

Personalised recommendations