Advertisement

Two-Dimensional Palindromes and Their Properties

  • Manasi S. KulkarniEmail author
  • Kalpana Mahalingam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10168)

Abstract

A two-dimensional word (2D) is a rectangular finite array of letters from the alphabet \(\varSigma \). A 2D word is said to be a 2D palindrome if it is equal to its reverse image. In this paper, we study some combinatorial properties of 2D palindromes. In particular, we provide a sufficient condition under which a 2D word is said to be a 2D palindrome, discuss the necessary and sufficient condition under which a 2D word can be decomposed into 2D palindromes, and find the relation between the set of all 2D palindromes and the set of all 2D primitive words. We also show that the set of all 2D palindromes is not a recognizable language, and study a special class of 2D palindromes, namely 2D palindrome square words.

Keywords

Combinatorics on words Two-Dimensional words Two-Dimensional palindromes Recognizable languages Primitivity Symmetry 

References

  1. 1.
    Amir, A., Benson, G.: Two-dimensional periodicity in rectangular arrays. SIAM J. Comput. 27(1), 90–106 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berthé, V., Vuillon, L.: Palindromes and two-dimensional Sturmian sequences. J. Automata Lang. Comb. 6(2), 121–138 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    De Natale, F.G.B., Giusto, D.D., Maccioni, F.: A symmetry-based approach to facial features extraction. In: Proceedings of 13th International Conference on Digital Signal Processing, vol. 2, pp. 521–525 (1997)Google Scholar
  4. 4.
    Geizhals, S., Sokol, D.: Finding maximal 2-dimensional palindromes. In: Grossi, R., Lewenstein, M. (eds.) 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016), vol. 54, pp. 19:1–19:12 (2016)Google Scholar
  5. 5.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Hooda, A., Bronstein, M.M., Bronstein, A.M., Horaud, R.P.: Shape palindromes: analysis of intrinsic symmetries in 2D articulated shapes. In: Bruckstein, A.M., Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 665–676. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-24785-9_56 CrossRefGoogle Scholar
  7. 7.
    Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata. Addison-Wesley Longman Inc., Boston (1969)zbMATHGoogle Scholar
  8. 8.
    Kiryati, N., Gofman, Y.: Detecting symmetry in grey level images: the global optimization approach. Int. J. Comput. Vision 29(1), 29–45 (1998)CrossRefGoogle Scholar
  9. 9.
    Kulkarni, M.S., Mahalingam, K.: Two-dimensional primitive words. Manuscript (in preparation)Google Scholar
  10. 10.
    Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Loy, G., Eklundh, J.-O.: Detecting symmetry and symmetric constellations of features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006). doi: 10.1007/11744047_39 CrossRefGoogle Scholar
  12. 12.
    Lyndon, R.C., Schützenberger, M.P.: The equation \(a^m= b^n c^p\) in a free group. Mich. Math. J. 9(4), 289–298 (1962)CrossRefzbMATHGoogle Scholar
  13. 13.
    Matz, O.: Recognizable vs. regular picture languages. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 112–121. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75414-5_7 CrossRefGoogle Scholar
  14. 14.
    O’Mara, D., Owens, R.: Measuring bilateral symmetry in digital images. In: Proceedings of 1996 IEEE TENCON Digital Signal Processing Applications, vol. 1, pp. 151–156 (1996)Google Scholar
  15. 15.
    Pickover, C.A.: The Zen of Magic Squares, Circles, and Stars: An Exhibition of Surprising Structures Across Dimensions. Princeton University Press, Princeton (2002)zbMATHGoogle Scholar
  16. 16.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Symmetries of non-rigid shapes. In: 2007 IEEE 11th International Conference on Computer Vision. pp. 1–7 (2007)Google Scholar
  17. 17.
    Yu, S.S.: Languages and Codes. Tsang Hai Book Publishing Co., Taichung (2005)Google Scholar
  18. 18.
    Yu, S.S.: Palindrome words and reverse closed languages. Int. J. Comput. Math. 75(4), 389–402 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations