Advertisement

Integrated Encryption in Dynamic Arithmetic Compression

  • Shmuel T. Klein
  • Dana ShapiraEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10168)

Abstract

A compression cryptosystem based on adaptive arithmetic coding is proposed, in which the updates of the frequency tables for the underlying alphabet are done selectively, according to some secret key K. We give empirical evidence that the compression performance is not hurt, and discuss also aspects of the system being used as an encryption method.

Keywords

Compression Performance Arithmetic Code Huffman Code Current Interval Choose Plaintext Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bergen, H.A., Hogan, J.M.: Data security in a fixed-model arithmetic coding compression algorithm. Comput. Secur. 11(5), 445–461 (1992)CrossRefGoogle Scholar
  2. 2.
    Klein, S.T., Shapira, D.: Pattern matching in Huffman encoded texts. Inf. Process. Manage. 41(4), 829–841 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Wong, K., Yuen, C.H.: Embedding compression in chaos based cryptography. IEEE Trans. Circuits Syst.-II Expr. Briefs 55(11), 1193–1197 (2008)CrossRefGoogle Scholar
  4. 4.
    Jones, C.B.: An efficient coding system for long source sequences. IEEE Trans. Inf. Theory 27, 280–291 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Witten, I.H., Cleary, J.G.: On the privacy afforded by adaptive text compression. Comput. Secur. 7(4), 397–408 (1988)CrossRefGoogle Scholar
  6. 6.
    Bergen, H.A., Hogan, J.M.: A chosen plaintext attack on an adaptive arithmetic coding compression algorithm. Comput. Secur. 12(2), 157–167 (1993)CrossRefGoogle Scholar
  7. 7.
    Wen, J., Kim, H., Villasenor, J.: Binary arithmetic coding with key based interval splitting. IEEE Trans. Signal Process. Lett. 13(2), 69–72 (2006)CrossRefGoogle Scholar
  8. 8.
    Jakimoski, G., Subbalakshmi, K.: Cryptanalysis of some multimedia encryption schemes. IEEE Trans. Multimed. 10(3), 330–338 (2008)CrossRefGoogle Scholar
  9. 9.
    Katti, R.S., Vosoughi, A.: On the security of key based interval splitting arithmetic coding with respect to message indistinguishability. IEEE Trans. Inf. Forensics Secur. 7(3), 895–903 (2012)CrossRefGoogle Scholar
  10. 10.
    Grangetto, M., Magli, E., Olmo, G.: Multimedia selective encryption by means of randomized arithmetic coding. IEEE Trans. Multimed. 8(5), 905–917 (2006)CrossRefGoogle Scholar
  11. 11.
    Wong, K., Lin, Q., Chen, J.: Simultaneous arithmetic coding and encryption using chaotic maps. IEEE Trans. Circuits Syst.-II Expr. Briefs 57(2), 146–150 (2010)CrossRefGoogle Scholar
  12. 12.
    Klein, S.T., Bookstein, A., Deerwester, S.: Storing text retrieval systems on cd-rom: compression and encryption considerations. ACM Trans. Inf. Syst. 7(3), 230–245 (1989)CrossRefGoogle Scholar
  13. 13.
    Fraenkel, A.S., Klein, S.T.: Complexity aspects of guessing prefix codes. Algorithmica 12(4), 409–419 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mahmoud, T.M., Abdel-Latef, B.A., Ahmed, A.A., Mahfouz, A.M.: Hybrid compression encryption technique for securing sms. Int. J. Comput. Sci. Secur. (IJCSS) 3(6), 473–481 (2009)Google Scholar
  15. 15.
    Ojha, D.B., Sharma, A., Dwivedi, A., Pande, N., Kumar, A.: Space age approach to transmit medical image with code base cryptosystem over noisy channel. Int. J. Eng. Sci. Technol. 2(12), 7112–7117 (2010)Google Scholar
  16. 16.
    Singh, A., Gilhotra, R.: Data security using private key encryption system based on arithmetic coding. Int. J. Netw. Secur. Appl. (IJNSA) 3(3), 58–67 (2011)Google Scholar
  17. 17.
    Cleary, J.G., Irvine, S.A., Rinsma-Melchert, I.: On the insecurity of arithmetic coding. Comput. Secur. 14(2), 167–180 (1995)CrossRefGoogle Scholar
  18. 18.
    Duan, L., Liao, X., Xiang, T.: A secure arithmetic coding based on Markov model. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2554–2562 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Véronis, J., Langlais, P.: Evaluation of parallel text alignment systems: the ARCADE project. In: Véronis, J. (ed.) Parallel Text Processing, pp. 369–388. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Science DepartmentBar Ilan UniversityRamat GanIsrael
  2. 2.Department of Computer Science and MathematicsAriel UniversityArielIsrael

Personalised recommendations