Systems Without Equilibrium

Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


It is now well established from a variety of studies that there is the presence of equilibrium points in normal dynamical systems. However, researchers have shown an increased interest in the absence of equilibrium points in a few rare systems recently. This chapter presents the special class of new systems without equilibrium.


Rare Systems Averaged Dynamical System Equilibrium Point Hidden Attractors Fractional-order Systems 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cafagna, D., Grassi, G.: Elegant chaos in fractional–order system without equilibria. Math. Prob. Eng. 380,436 (2013)Google Scholar
  2. 2.
    Cafagna, D., Grassi, G.: Chaos in a fractional-order system without equilibrium points. Commun. Nonlinear Sci. Numer. Simul. 19, 2919–2927 (2014)Google Scholar
  3. 3.
    Hu, X., Liu, C., Liu, L., Ni, J., Li, S.: Multi-scroll hidden attractors in impoved Sprott A system. Nonlinear Dyn. 86, 1725–1734 (2016)Google Scholar
  4. 4.
    Jafari, S., Pham, V.T., Kapitaniak, T.: Multiscroll chaotic sea obtained from a simple 3D system without equilibrium. Int. J. Bifurcat. Chaos 26, 1650,031 (2016)Google Scholar
  5. 5.
    Jafari, S., Sprott, J., Golpayegani, S.M.R.H.: Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377, 699–702 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fract. 57, 79–84 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Li, C., Sprott, J.C.: Amplitude control approach for chaotic signals. Nonlinear Dyn. 73, 1335–1341 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Li, C., Sprott, J.C.: Finding coexisting attractors using amplitude control. Nonlinear Dyn. 78, 2059–2064 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, C., Sprott, J.C.: Variable-boostable chaotic flows. Optik 127, 10389–10398 (2016)CrossRefGoogle Scholar
  10. 10.
    Maaita, J.O., Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: The dynamics of a cubic nonlinear system with no equilibrium point. J. Nonlinear Dyn. 2015, 257,923 (2015)Google Scholar
  11. 11.
    Obeid, I., Morizio, J.C., Moxon, K.A., Nicolelis, M.A.L., Wolf, P.D.: Two multichannel integrated circuits for neural recording and signal processing. IEEE Trans. Biomed. Eng. 50, 255–258 (2003)Google Scholar
  12. 12.
    Pham, V.T., Volos, C., Jafari, S., Kapitaniak, T.: Coexistence of hidden chaotic attractors in a novel no–equilibrium system. Nonlinear Dyn. 1–10 (2016). doi: 10.1007/s11071-016-3170-x
  13. 13.
    Posch, H.A., Hoover, W.G., Vesely, F.J.: Canonical dynamics of the nose oscillator: stability, order, and chaos. Phys. Rev. A 33, 4253–4265 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sprott, J.: Some simple chaotic flows. Phys. Rev. E 50, R647–650 (1994)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sprott, J.C.: Elegant Chaos Algebraically Simple Chaotic Flows. World Scientific, Singapore (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Steinhaus, B.M.: Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study. Circ. Res. 64, 449–462 (1989)Google Scholar
  17. 17.
    Tahir, D.R., Jafari, S., Pham, V.T., Volos, C., Wang, X.: A novel no–equilibrium chaotic system with multiwing butterfly attractors. Int. J. Bifurcat. Chaos 25, 1550,056 (2015)Google Scholar
  18. 18.
    Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376, 102–108 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yu, S., Tang, W.K.S., Lu, J., Chen, G.: Design and implementation of multi-wing butterfly chaotic attractors via Lorenz-type systems. Int. J. Bifurcat. Chaos 20, 29–41 (2010)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.School of Electronics and TelecommunicationsHanoi University of Science and TechnologyHanoiVietnam
  2. 2.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Faculty of Mechanical EngineeringLodz University of TechnologyŁódźPoland

Personalised recommendations