Special Coordinates

  • Kenneth R. Meyer
  • Daniel C. Offin
Part of the Applied Mathematical Sciences book series (AMS, volume 90)


Celestial mechanics is replete with special coordinate systems some of which bear the names of the greatest mathematicians of all times. There is an old saying in celestial mechanics: “No set of coordinates is good enough.”


Circular Orbit Angle Variable Celestial Mechanic Kepler Problem Invariant Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Mathieu, E. 1874: Mémorire sur les equations différentieles canoniques de la mácanique, J. de Math. Pures et Appl., 39, 265–306.Google Scholar
  2. Pollard, H. 1966: Mathematical Introduction to Celestial Mechanics. Prentice–Hall, New Jersey.zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kenneth R. Meyer
    • 1
  • Daniel C. Offin
    • 2
  1. 1.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Mathematic and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations