Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 90))

  • 2865 Accesses

Abstract

Perturbation theory is one of the few ways that one can bridge the gap between the behavior of a real nonlinear system and its linear approximation. Because the theory of linear systems is so much simpler, investigators are tempted to fit the problem at hand to a linear model without proper justification. Such a linear model may lead to quantitative as well as qualitative errors. On the other hand, so little is known about the general behavior of a nonlinear system that some sort of approximation has to be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 1927: Dynamical Systems, Coloq. 9, Amer. Math. Soc., Providence.

    Google Scholar 

  • Cushman, R., Deprit, A., and Mosak, R. 1983: Normal forms and representation theory, J. Math. Phys., 24(8), 2102–2116.

    Article  MathSciNet  MATH  Google Scholar 

  • Deprit, A. 1969: Canonical transformation depending on a small parameter, Celest. Mech. 72, 173–79.

    MathSciNet  MATH  Google Scholar 

  • Elphick, C., Tirapegui, E., Brachet, M., Coullet, P., and Iooss, G. 1987: A simple global characterization for normal forms of singular vector fields, Physica D, 29, 96–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Henrard, J. 1970: On a perturbation theory using Lie transforms, Celest. Mech., 3, 107–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Kamel, A. 1970: Perturbation method in the theory of nonlinear oscillations, Celest. Mech., 3, 90–99.

    Article  MATH  Google Scholar 

  • 1976: On resonant non linearly coupled oscillators with two equal frequencies, Comm. Math. Phy. 48, 53–79.

    Google Scholar 

  • 1978: On resonant classical Hamiltonians with two equal frequencies, Comm. Math. Phy. 58, 85–112.

    Google Scholar 

  • Liu, J. C. 1985: The uniqueness of normal forms via Lie transforms and its applications to Hamiltonian systems, Celest. Mech., 36(1), 89–104.

    Article  MathSciNet  MATH  Google Scholar 

  • McGehee, R. and Meyer, K. R. 1974: Homoclinic points of area preserving diffeomorphisms, Amer. J. Math., 96(3), 409–21.

    Article  MathSciNet  MATH  Google Scholar 

  • 1984b: Normal forms for the general equilibrium, Funkcialaj Ekvacioj, 27(2), 261–71.

    Google Scholar 

  • 1986: The stability of the Lagrange triangular point and a theorem of Arnold, J. Diff. Eqs., 62(2), 222–36.

    Google Scholar 

  • 1956: The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math., 9, 673–692.

    Google Scholar 

  • 1885: Sur les courbes definies par les equations differentielles, J. Math. Pures Appl., 4, 167–244.

    Google Scholar 

  • Rüssman, H. 1959: Uber die Existenz einer Normalform inhaltstreuer elliptischer Transformationen, Math. Ann., 167, 55–72.

    Google Scholar 

  • 1990: Transformation to versal normal form, Computer Aided Proofs in Analysis (Ed. K. R. Meyer and D. S. Schmidt), IMA Series 28, Springer–Verlag, New York.

    Google Scholar 

  • 1978: Proof of the stability of Lagrangian solutions for a critical mass ration, Sov. Astron. Lett., 4(2), 79–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Meyer, K.R., Offin, D.C. (2017). Normal Forms. In: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Applied Mathematical Sciences, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-53691-0_10

Download citation

Publish with us

Policies and ethics