Skip to main content

Lorenz Type Attractor in Electronic Parametric Generator and Its Transformation Outside the Parametric Resonance

  • Chapter
  • First Online:
  • 932 Accesses

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 20))

Abstract

For parametric generator composed of three LC circuits and a quadratic nonlinear element on the basis of the operational amplifier and analog multiplier the equations for the interacting mode amplitudes are derived. At frequencies providing the parametric resonance precisely, the problem reduces to a system of three differential equations of the first order for the amplitudes with attractor of Lorenz type. In the presence of the detuning not only the dynamics of amplitudes are relevant, but also the phase dynamics. Attractor must be considered now in the six-dimensional phase space, and in contrast to the Lorenz attractor it is not quasi-hyperbolic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Lyapunov exponents’ calculations were performed on time intervals of duration of 50,000 with the counting of the average values and standard deviations on 20 samples. As an error, the standard deviations are indicated.

  2. 2.

    The lack of a perfect match in the parameters for Fig. 2.9 in comparison to Fig. 2.8 is due to the approximate nature of description in terms of slow amplitudes.

References

  1. Afraimovich, V.S.: Strange attractors and quasiattractors. Nonlinear and turbulent processes in physics. In: Proceedings of the Second International Workshop, Kiev, vol. 1, pp. 1133–1138 (1984)

    Google Scholar 

  2. Akhmanov, S.A., Khokhlov, R.V.: Parametric amplifiers and generators of light. Physics-Uspekhi 9 (2), 210–222 (1966)

    Article  Google Scholar 

  3. Akulenko, L.D.: Parametric control of the oscillations and rotations of a physical pendulum (swing). Prikladnaya Matematika i Mekhanika 57 (2), 82–91 (1993)

    MathSciNet  Google Scholar 

  4. Anishchenko, V.S.: Attractors of dynamical systems. Izvestija VUZ. Appl. Nonlinear Dynam. 5 (1), 109–127 (1997)

    MathSciNet  Google Scholar 

  5. Banerjee, S., Yorke, J.A., Grebogi, C.: Robust chaos. Phys. Rev. Lett. 80, 3049–3052 (1998)

    Article  MATH  Google Scholar 

  6. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: a method for computing all of them. Meccanica 15, 9–20 (1980)

    Article  MATH  Google Scholar 

  7. Bonatti, C., Diaz, L.J., Viana, M.: Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. In: Encyclopedia of Mathematical Sciences, vol. 102. Springer, Berlin, Heidelberg, New York (2005)

    Google Scholar 

  8. Chen, H.K., Lee, C.I.: Anti-control of chaos in rigid body motion. Chaos Solitons Fractals 21, 957–965 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

    Article  Google Scholar 

  10. Doroshin, A.V.: Modeling of chaotic motion of gyrostats in resistant environment on the base of dynamical systems with strange attractors. Commun. Nonlinear Sci. Numer. Simul. 16, 3188–3202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elhadj, Z., Sprott, J.C.: Robust Chaos and its Applications. World Scientific, Singapore (2011)

    MATH  Google Scholar 

  12. Fowler, A.C., Gibbon, J.D., McGuinness, M.J.: The complex Lorenz equations. Physica D: Nonlinear Phenom. 4 (2), 139–163 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gibbon, J.D., McGuinness, M.J.: The real and complex Lorenz equations in rotating fluids and lasers. Physica D: Nonlinear Phenom. 5 (1), 108–122 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glukhovskii, A.B.: Nonlinear systems that are superpositions of gyrostats. Sov. Phys. Doklady 27, 823–827 (1982)

    MATH  Google Scholar 

  15. Haken, H.: Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53 (1), 77–78 (1975)

    Article  Google Scholar 

  16. Hemail, N.: Strange attractors in brushless DC motor. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl. 41 (1), 40–45 (1994)

    Google Scholar 

  17. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolár̆, M., Gumbs, G.: Theory for the experimental observation of chaos in a rotating waterwheel. Phys. Rev. A 45, 626–637 (1992)

    Google Scholar 

  19. Kozlov, V.V.: On the problem of fall of a rigid body in a resisting medium. Moscow Univ. Mech. Bull. 45 (1), 30–35 (1990)

    MATH  Google Scholar 

  20. Kuznetsov, S.P.: Dynamical Chaos, 2nd edn. Moscow, Fizmatlit (2006)

    Google Scholar 

  21. Kuznetsov, S.P.: Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics. Physics-Uspekhi 54 (2), 119–144 (2011)

    Article  Google Scholar 

  22. Kuznetsov, S.P.: Plate falling in a fluid: regular and chaotic dynamics of finite-dimensional models. Regul. Chaot. Dynam. 20 (3), 345–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuznetsov, S.P.: Parametric chaos generator operating on a varactor diode with the instability limitation decay mechanism. Tech. Phys. 61 (3), 436–445 (2016)

    Article  Google Scholar 

  24. Letellier, C., Aguirre, L.A., Maquet, J., Lefebvre, B.: Analogy between a 10D model for nonlinear wave–wave interaction in a plasma and the 3D Lorenz dynamics. Physica D: Nonlinear Phenom. 179 (1), 33–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Y., Yang, Q., Pang, G.: A hyperchaotic system from the Rabinovich system. J. Comput. Appl. Math. 234 (1), 101–113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Llibre, J., Messias, M., da Silva, P.R.: On the global dynamics of the Rabinovich system. J. Phys. A: Math. Theor. 41 (27), 275210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20 (2), 130–141 (1963)

    Article  Google Scholar 

  28. Louisell, W.H.: Coupled Mode and Parametric Electronics. Wiley, New York (1960)

    Google Scholar 

  29. Mahmoud, G.M., Ahmed, M.E., Mahmoud, E.E.: Analysis of hyperchaotic complex Lorenz systems. Int. J. Mod. Phys. C 19, 1477–1494 (2008)

    Article  MATH  Google Scholar 

  30. Oraevskii, A.N.: Masers, lasers, and strange attractors. Quant. Electron. 11 (1), 71–78 (1981)

    Google Scholar 

  31. Oraevsky, A.N.: Dynamics of single-mode lasers and dynamical chaos. Izvestija VUZ. Appl. Nonlinear Dynam. 4, 3–13 (1996)

    Google Scholar 

  32. Ostrovskii, L.A., Papilova, I.A., Sutin, A.M.: Parametric ultrasound generator. Sov. Phys. JETP Lett. 15, 322–323 (1972)

    Google Scholar 

  33. Peters, F., Lobry, L., Lemaire, E.: Experimental observation of Lorenz chaos in the Quincke rotor dynamics. Chaos: Interdiscip. J. Nonlinear Sci. 15, 013102 (2005)

    Article  Google Scholar 

  34. Pikovski, A.S., Rabinovich, M.I., Trakhtengerts, V.Y.: Appearance of chaos at decay saturation of parametric instability. Sov. Phys. JETP 47, 715–719 (1978)

    Google Scholar 

  35. Poland, D.: Cooperative catalysis and chemical chaos: a chemical model for the Lorenz equations. Physica D: Nonlinear Phenom. 65, 86–99 (1993)

    Article  MATH  Google Scholar 

  36. Rabinovich, M.I., Fabrikant, A.L.: Stochastic wave self-modulation in nonequilibrium media. Sov. Phys. JETP 50, 311–317 (1979)

    Google Scholar 

  37. Rössler, O.E.: Continuous chaos: four prototype equations. Ann. N. Y. Acad. Sci. 316, 376–392 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rucklidge, A.M.: Chaos in magnetoconvection. Nonlinearity 7, 1565–1591 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shilnikov, L.P.: Bifurcations and strange attractors. Vestnik Nizhegorodskogo Universiteta 4 (2), 364–366 (2011)

    Google Scholar 

  40. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, NY, Heidelberg, Berlin (1982)

    Book  MATH  Google Scholar 

  41. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Comp. Math. 2, 53–117 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Vyshkind, S.Ya., Rabinovich, M.I.: The phase stochastization mechanism and the structure of wave turbulence in dissipative media. Sov. Phys. JETP 44, 292–299 (1976)

    Google Scholar 

  43. Wang, P.K.C., Masui, K.: Intermittent phase unlocking in a resonant three-wave interaction with parametric excitation. Phys. Lett. A 81 (2), 97–101 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey P. Kuznetsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kuznetsov, S.P. (2017). Lorenz Type Attractor in Electronic Parametric Generator and Its Transformation Outside the Parametric Resonance. In: Aranson, I., Pikovsky, A., Rulkov, N., Tsimring, L. (eds) Advances in Dynamics, Patterns, Cognition. Nonlinear Systems and Complexity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-53673-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53673-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53672-9

  • Online ISBN: 978-3-319-53673-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics