Skip to main content

Vortices Termination in the Cardiac Muscle

  • Chapter
  • First Online:

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 20))

Abstract

Methods for termination of three-dimensional electrical vortices in the heart are needed for development of patient-friendly cardiac defibrillation techniques (Nature 475, 235, 2011). The defibrillation technique used today is the delivery of a high-energy electric shock (360 J, 1 kV, 30 A, 12 ms, when applied externally) often associated with severe side effects. Developing low-energy defibrillation methods are hampered by two problems: the unknown locations of the cores of the vortices, and the unpredictable phases of the vortex waves rotating around these cores. The first problem has been resolved through the use of electric field pulses to excite the cores of all pinned vortices simultaneously. Approaches to solve the second problem are being developed. One of them is based on the phase scanning of all pinned vortices in parallel to hit the critical time window (“Vulnerable Window”, VW) of every pinned vortex. We investigate the related physical mechanisms and describe problems created by scanning. We describe also a mechanism by which a 3-dim scroll vortex may be terminated with a VW of the full 2π radians. It makes knowledge of the wave phase no longer required. We describe a mechanism terminating also a free (not pinned) vortex, when the vortex’s core passes not very far from a defect. About 500 experiments with termination of vortices during ventricular fibrillation in pig isolated hearts confirm that pinned vortices, hidden from direct observation, are significant in fibrillation. These results form a physical basis needed for creation of new effective methods for termination vortices underlying fibrillation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wiener, N., Rosenblueth, A.: The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205–265 (1946)

    MathSciNet  MATH  Google Scholar 

  2. Belousov, B.P.: Periodically acting reaction and its mechanism. Sbornik Referatov po Radiotsionnoi Meditsine, [Collection of Abstracts on Radiation Medicine] p. 145 (1959)

    Google Scholar 

  3. Pumir, A., Krinsky, V.: Unpinning of a rotating wave in cardiac muscle by an electric field. J. Theor. Biol. 199, 311–319 (1999)

    Article  Google Scholar 

  4. Takagi, S., et al.: Unpinning and removal of a rotating wave in cardiac muscle. Phys. Rev. Lett. 93, 058101 (2004)

    Article  Google Scholar 

  5. Pumir, A., et al.: Wave emission from heterogeneities opens a way to controlling chaos in the heart. Phys. Rev. Lett. 99, 208101 (2007)

    Article  Google Scholar 

  6. Fenton, F.H., et al.: Termination of atrial fibrillation using pulsed low-energy far-field stimulation. Circulation 120, 467–476 (2009)

    Article  Google Scholar 

  7. Luther, S., et al.: Low-energy control of electrical turbulence in the heart. Nature 475, 235–239 (2011)

    Article  Google Scholar 

  8. Davidenko, J.M., Pertsov, A., Salomonsz, R., Baxter, W., Jalife, J.: Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351 (1992)

    Article  Google Scholar 

  9. Winfree, A.T.: Electrical turbulence in three-dimensional heart muscle. Science 266, 1003–1006 (1994)

    Article  Google Scholar 

  10. Gray, R.A., Pertsov, A.M., Jalife, J.: Spatial and temporal organization during cardiac fibrillation. Nature 392, 75–78 (1998)

    Article  Google Scholar 

  11. Winfree, A., Strogatz, S.: Organizing centres for three-dimensional chemical waves. Nature 311, 611–615 (1984)

    Article  Google Scholar 

  12. Rappel, W.-J., Fenton, F., Karma, A.: Spatiotemporal control of wave instabilities in cardiac tissue. Phys. Rev. Lett 83, 456–459 (1999)

    Article  Google Scholar 

  13. Alonso, S., Panfilov, A.: Negative filament tension at high excitability in a model of cardiac tissue. Phys. Rev. Lett. 100, 218101 (2008)

    Article  Google Scholar 

  14. Jiménez, Z., Steinbock, O.: Stationary vortex loops induced by filament interaction and local pinning in a chemical reaction-diffusion system. Phys. Rev. Lett. 109, 1–4 (2012)

    Article  Google Scholar 

  15. Barkley, D.: Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72, 164–167 (1994)

    Article  Google Scholar 

  16. Mines, G.R.: On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans. R. Soc. Can. 8, 43–52 (1914)

    Google Scholar 

  17. Pumir, A. et al.: Wave emission from heterogeneities opens a way to controlling chaos in the heart. Phys. Rev. Lett. 99, 208101 (2007)

    Article  Google Scholar 

  18. Sepulveda, N.G., Roth, B.J., Wikswo, J.P.: Current injection into a two-dimensional anisotropic bidomain. Biophys. J. 55, 987–999 (1989)

    Article  Google Scholar 

  19. Ripplinger, C.M., Krinsky, V.I., Nikolski, V.P., Efimov, I.R.: Mechanisms of unpinning and termination of ventricular tachycardia. Am. J. Physiol. 291, H184–H192 (2006)

    Google Scholar 

  20. Bittihn, P., et al.: Far field pacing supersedes anti-tachycardia pacing in a generic model of excitable media. New J. Phys. 10, 103012 (2008)

    Article  Google Scholar 

  21. Bittihn, P., et al.: Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable media. Philos. Trans. R. Soc. A 368, 2221–2236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Behrend, A., Bittihn, P., Luther, S.: Predicting unpinning success rates for a pinned spiral in an excitable medium. Comput. Cardiol. 37 345–348 (2010)

    Google Scholar 

  23. Pumir, A., Krinsky, V.: Unpinning of a rotating wave in cardiac muscle by an electric field. J. Theor. Biol. 199, 311–319 (1999)

    Article  Google Scholar 

  24. Shajahan, T., Berg, S., Luther, S., Krinsky, V., Bittihn, P.: Scanning and resetting the phase of a pinned spiral wave using periodic far field pulses. New J. Phys. 18, NJP-104359 (2016)

    Google Scholar 

  25. Krinsky, V.I., Agladze, K.I.: Interaction of rotating waves in an active chemical medium. Physica D 8, 50–56 (1983)

    Article  Google Scholar 

  26. Mahajan, A., et al.: A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys. J. 94, 392–410 (2008)

    Article  Google Scholar 

  27. Tyson, J.J., Keener, J.P.: Singular perturbation theory of traveling waves in excitable media (a review). Physica D 32, 327–361 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Biktashev, V.N.: Evolution of vortices in active media. Ph.D. Thesis, Moscow Institute of Physics and Technology (1989)

    Google Scholar 

  29. Keener, J., Tyson, J.: The dynamics of scroll waves in excitable media. SIAM Rev. 34, 1–39 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Panfilov, A.V., Rudenko, A.N., Krinsky, V.I.: Vortical rings in three-dimensional active media with diffusion in two components. Biophys. 31, 926–931 (1986)

    Google Scholar 

  31. Alonso, S., Sagués, F., Mikhailov, A.S.: Taming winfree turbulence of scroll waves in excitable media. Science 299, 1722 (2003)

    Article  Google Scholar 

  32. Hornung, D.: Cardiac arrhythmia termination on the vascular and organ scale. Ph.D. Thesis, p.121, Georg-August Universität Göttingen (2013)

    Google Scholar 

  33. Isomura, A., Hoerning, M., Agladze, K., Yoshikawa, K.: Eliminating spiral waves pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli. Phys. Rev. E 78, 066216 (2008)

    Article  Google Scholar 

  34. Pumir, A., et al.: Wave-train induced unpinning of weakly anchored vortices in excitable media. Phys. Rev. E 81, 010901 (2010)

    Article  Google Scholar 

  35. Otani, N., Krinski, V., Han, S., Carr, J., Luther, S.: Modification of scroll wave filaments when electric fields are applied to the heart. In: SIAM-Life Sciences, July 11–16. SIAM, Boston (2016)

    Google Scholar 

  36. Zemlin, C., Mironov, S., Pertsov, A.: Delayed success in termination of three-dimensional reentry: role of surface polarization. J. Cardiovasc. Electrophysiol. 14, 257 (2003)

    Article  Google Scholar 

  37. Weiss, J.N., et al.: Perspective: a dynamics-based classification of ventricular arrhythmias. J. Mol. Cell. Cardiol. 82, 136 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to the results has received funding from Max Planck Gesellschaft, the European Community Seventh Framework Programme FP7/2007–2013 under Grant Agreement 17 No. HEALTH-F2-2009-241526, EUTrigTreat, and from EPSRC (UK) grant EP/I029664. We acknowledge support from the German Federal Ministry of Education and Research (BMBF) (project FKZ 031A147, GO-Bio), the German Research Foundation (DFG) (Collaborative Research Centres SFB 1002 Project C3 and SFB 937 Project A18), the German Center for Cardiovascular Research (DZHK e.V.), and EPSRC (UK) grant EP/N014391. US NIH grant no. R01HL089271.

Ethics The study was reviewed and approved by the ethics committee, permit no. 33.9-42052-04-11/0384, Lower Saxony State Office for Customer Protection and Food Safety.

Competing Interests We have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin I. Krinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Krinsky, V.I., Biktashev, V.N., Otani, N.F., Luther, S. (2017). Vortices Termination in the Cardiac Muscle. In: Aranson, I., Pikovsky, A., Rulkov, N., Tsimring, L. (eds) Advances in Dynamics, Patterns, Cognition. Nonlinear Systems and Complexity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-53673-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53673-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53672-9

  • Online ISBN: 978-3-319-53673-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics