Skip to main content

Dynamics of Odor-Evoked Activity Patterns in the Olfactory System

  • Chapter
  • First Online:
  • 994 Accesses

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 20))

Abstract

Olfaction, the sense of smell, has the reputation of being slow compared to other senses such as vision and hearing. Consequently, constant stimuli are commonly used in olfaction research. However, in natural conditions, animals encounter fine-scale temporal patterns of odorant stimuli, which contain information not only about odor identity but also about the distance and number of odorant sources. New tools for monitoring and controlling stimulus dynamics in the lab have promoted our understanding of how temporal stimulus cues are processed in the olfactory system. In this chapter we contrast classic and recent studies on olfactory coding, and discuss some physiological and behavioral constraints on a neural code for odor identity, concentration, and temporal stimulus structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hildebrand, J.G., Shepherd, G.M.: Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595–631 (1997)

    Article  Google Scholar 

  2. Nakagawa, T., Vosshall, L.B.: Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr. Opin. Neurobiol. 19 (3), 284–292 (2009)

    Article  Google Scholar 

  3. Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L.B., Touhara, K.: Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452 (7190), 1002–1006 (2008)

    Article  Google Scholar 

  4. Silbering, A.F., Benton, R.: Ionotropic and metabotropic mechanisms in chemoreception: ‘chance or design’? EMBO Rep. 11 (3), 173–179 (2010)

    Article  Google Scholar 

  5. Vosshall, L.B., Hansson, B.S.: A unified nomenclature system for the insect olfactory coreceptor. Chem. Senses 36 (6), 497–498 (2011)

    Article  Google Scholar 

  6. Wicher, D., Schäfer, R., Bauernfeind, R., Stensmyr, M.C., Heller, R., Heinemann, S.H., Hansson, B.S.: Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452 (7190), 1007–1011 (2008)

    Article  Google Scholar 

  7. Clyne, P.J., Warr, C.G., Freeman, M.R., Lessing, D., Kim, J., Carlson, J.R.: A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22 (2), 327–338 (1999)

    Article  Google Scholar 

  8. Vosshall, L.B., Wong, A.M., Axel, R.: An olfactory sensory map in the fly brain. Cell 102, 147–159 (2000)

    Article  Google Scholar 

  9. Hallem, E.A., Ho, M.G., Carlson, J.R.: The molecular basis of odor coding in the Drosophila antenna. Cell 117 (7), 965–979 (2004)

    Article  Google Scholar 

  10. Gao, Q., Yuan, B., Chess, A.: Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat. Neurosci. 3, 780–785 (2000)

    Article  Google Scholar 

  11. Galizia, C.G., Menzel, R.: Odour perception in honeybees: coding information in glomerular patterns. Curr. Opin. Neurobiol. 10, 504–510 (2000)

    Article  Google Scholar 

  12. Hansson, B.S., Carlsson, M.A., Kalinová, B.: Olfactory activation patterns in the antennal lobe of the sphinx moth, manduca sexta. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189 (4), 301–308 (2003)

    Google Scholar 

  13. Joerges, J., Küttner, A., Galizia, C.G., Menzel, R.: Representations of odour mixtures visualized in the honeybee brain. Nature 387, 285–288 (1997)

    Article  Google Scholar 

  14. Wilson, R., Mainen, Z.F.: Early events in olfactory processing. Annu. Rev. Neurosci. 29, 163–201 (2006)

    Article  Google Scholar 

  15. Christensen, T.A., Waldrop, B.R., Harrow, I.D., Hildebrand, J.G.: Local interneurons and information processing in the olfactory glomeruli of the moth manduca sexta. J. Comp. Physiol. A 173 (4), 385–399 (1993)

    Article  Google Scholar 

  16. Christensen, T.A., Waldrop, B.R., Hildebrand, J.G.: Gabaergic mechanisms that shape the temporal response to odors in moth olfactory projection neurons. Ann. N. Y. Acad. Sci. 855, 475–481 (1998)

    Article  Google Scholar 

  17. Christensen, T.A., Waldrop, B.R., Hildebrand, J.G.: Multitasking in the olfactory system: context-dependent responses to odors reveal dual gaba-regulated coding mechanisms in single olfactory projection neurons. J. Neurosci. 18 (15), 5999–6008 (1998)

    Google Scholar 

  18. Sachse, S., Galizia, C.G.: Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J. Neurophysiol. 87, 1106–1117 (2002)

    Article  Google Scholar 

  19. Wilson, R.I., Laurent, G.: Role of gabaergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–79 (2005)

    Article  Google Scholar 

  20. Olsen, S.R., Bhandawat, V., Wilson, R.: Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54 (1), 89–103 (2007)

    Article  Google Scholar 

  21. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M., Miesenböck, G.: Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128 (3), 601–612 (2007)

    Article  Google Scholar 

  22. Silbering, A.F., Galizia, C.G.: Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J. Neurosci. 27 (44), 11966–11977 (2007)

    Article  Google Scholar 

  23. Silbering, A.F., Okada, R., Ito, K., Galizia, C.G.: Olfactory information processing in the Drosophila antennal lobe: anything goes? J. Neurosci. 28 (49), 13075–13087 (2008)

    Article  Google Scholar 

  24. Davis, R.L.: Mushroom bodies and Drosophila learning. Neuron 11, 1–14 (1993)

    Article  Google Scholar 

  25. Davis, R.L.: Traces of Drosophila memory. Neuron 70 (1), 8–19 (2011)

    Article  Google Scholar 

  26. Heisenberg, M.: Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4 (4), 266–275 (2003)

    Article  Google Scholar 

  27. Menzel, R.: Searching for the memory trace in a mini-brain, the honeybee. Learn. Mem. 8 (2), 53–62 (2001)

    Article  Google Scholar 

  28. de Bruyne, M., Clyne, P.J., Carlson, J.R.: Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19 (11), 4520–4532 (1999)

    Google Scholar 

  29. Nowotny, T., de Bruyne, M., Berna, A.Z., Warr, C.G., Trowell, S.C.: Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications. Bioinspir. Biomim. 9 (4), 046007 (2014)

    Article  Google Scholar 

  30. Galizia, C.G., Joerges, J., Küttner, A., Faber, T., Menzel, R.: A semi-in-vivo preparation for optical recording of the insect brain. J. Neurosci. Methods 76 (1), 61–69 (1997)

    Article  Google Scholar 

  31. Galizia, C.G., Sachse, S., Rappert, A., Menzel, R.: The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat. Neurosci. 2, 473–478 (1999)

    Article  Google Scholar 

  32. Sachse, S., Rappert, A., Galizia, C.G.: The spatial representation of chemical structures in the antennal lobes of honeybees: steps toward the olfactory code. Eur. J. Neurosci. 11, 3970–3982 (1999)

    Article  Google Scholar 

  33. Galizia, C.G., Kimmerle, B.: Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J. Comp. Physiol. A 190, 21–38 (2004)

    Article  Google Scholar 

  34. Galán, R.F., Sachse, S., Galizia, C.G., Herz, A.V.M.: Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Comput. 16, 999–1012 (2004)

    Article  MATH  Google Scholar 

  35. Schmuker, M., Yamagata, N., Nawrot, M.P., Menzel, R.: Parallel representation of stimulus identity and intensity in a dual pathway model inspired by the olfactory system of the honeybee. Front. Neuroeng. 4, 17 (2011)

    Article  Google Scholar 

  36. Sachse, S., Galizia, C.G.: The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur. J. Neurosci. 18, 2119–2132 (2003)

    Article  Google Scholar 

  37. Guerrieri, F., Schubert, M., Sandoz, J.-C., Giurfa, M.: Perceptual and neural olfactory similarity in honeybees. PLoS Biol. 3 (4), e60 (2005)

    Article  Google Scholar 

  38. Baker, T.C., Fadamiro, H.Y., Cosse, A.A.: Moth uses fine tuning for odour resolution. Nature 393 (6685), 530–530 (1998)

    Article  Google Scholar 

  39. Szyszka, P., Stierle, J.S., Biergans, S., Galizia, C.G.: The speed of smell: odor-object segregation within milliseconds. PLoS One 7 (4), e36096 (2012)

    Article  Google Scholar 

  40. Badel, L., Ohta, K., Tsuchimoto, Y., Kazama, H.: Decoding of context-dependent olfactory behavior in Drosophila. Neuron 91 (1), 155–167 (2016)

    Article  Google Scholar 

  41. Laurent, G., Wehr, M., Davidowitz, H.: Temporal representations of odors in an olfactory network. J. Neurosci. 16, 3837–3847 (1996)

    Google Scholar 

  42. Laurent, G., MacLeod, K., Wehr, M.: Spatiotemporal structure of olfactory inputs to the mushroom bodies. Learn. Mem. 5, 124–132 (1998)

    Google Scholar 

  43. Adrian, E.D.: Olfactory reactions in the brain of the hedgehog. J. Physiol. 100 (4), 459–473 (1942)

    Article  Google Scholar 

  44. Freeman, W.J.: The physiology of perception. Sci. Am. 264 (2), 78–85 (1991)

    Article  Google Scholar 

  45. Gelperin, A., Tank, D.W.: Odour-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 345 (6274), 437–440 (1990)

    Article  Google Scholar 

  46. Heinbockel, T., Kloppenburg, P., Hildebrand, J.G.: Pheromone-evoked potentials and oscillations in the antennal lobes of the sphinx moth manduca sexta. J. Comp. Physiol. A 182 (6), 703–714 (1998)

    Article  Google Scholar 

  47. Stopfer, M., Bhagavan, S., Smith, B.H., Laurent, G.: Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390 (6655), 70–74 (1997)

    Article  Google Scholar 

  48. Nusser, Z., Kay, L.M., Laurent, G., Homanics, G.E., Mody, I.: Disruption of gaba(a) receptors on gabaergic interneurons leads to increased oscillatory power in the olfactory bulb network. J. Neurophysiol. 86 (6), 2823–2833 (2001)

    Google Scholar 

  49. Biergans, S.D., Jones, J.C., Treiber, N., Galizia, C.G., Szyszka, P.: Dna methylation mediates the discriminatory power of associative long-term memory in honeybees. PLoS One 7 (6), e39349 (2012)

    Article  Google Scholar 

  50. Lotka, A.J.: Contribution to the theory of periodic reaction. J. Phys. Chem. 14 (3), 271–274 (1910)

    Article  Google Scholar 

  51. May, R.M., Leonard, W.J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  52. Laurent, G., Stopfer, M., Friedrich, R.W., Rabinovich, M.I., Abarbanel, H.D.I.: Odor encoding as an active, dynamical process: Experiments, computation, and theory. Annu. Rev. Neurosci. 24, 263–297 (2001)

    Article  Google Scholar 

  53. Rabinovich, M. Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H.D.I., Laurent, G.: Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87 (6), 068102 (2001)

    Article  Google Scholar 

  54. Mazor, O., Laurent, G.: Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661 (2005)

    Article  Google Scholar 

  55. Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Generation and reshaping of sequences in neural systems. Biol. Cybern. 95 (6), 519–536 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Nowotny, T., Rabinovich, M.I.: Dynamical origin of independent spiking and bursting activity in neural microcircuits. Phys. Rev. Lett. 98, 128106 (2007)

    Article  Google Scholar 

  57. Ashwin, P., Karabacak, O., Nowotny, T.: Criteria for robustness of heteroclinic cycles in neural microcircuits. J. Math. Neurosci. 1 (1), 13 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ashwin, P., Swift, J.W.: The dynamics of n weakly coupled identical oscillators. J. Nonlinear Sci. 2, 69–108 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  59. Hansel, D., Mato, G., Meunier, C.: Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E 48 (5), 3470–3477 (1993)

    Article  Google Scholar 

  60. Buckley, C.L., Nowotny, T.: Transient dynamics between displaced fixed points: an alternate nonlinear dynamical framework for olfaction. Brain Res. 1434, 62–72 (2012)

    Article  Google Scholar 

  61. Buckley, C.L., Nowotny, T.: Multiscale model of an inhibitory network shows optimal properties near bifurcation. Phys. Rev. Lett. 106 (23), 238109 (2011)

    Article  Google Scholar 

  62. Vetter, R.S., Sage, A.E., Justus, K.A., Cardé, R.T., Galizia, C.G.: Temporal integrity of an airborne odor stimulus is greatly affected by physical aspects of the odor delivery system. Chem. Senses 31 (4), 359–369 (2006)

    Article  Google Scholar 

  63. Uchida, N., Mainen, Z.F.: Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–1229 (2003)

    Article  Google Scholar 

  64. Resulaj, A., Rinberg, D.: Novel behavioral paradigm reveals lower temporal limits on mouse olfactory decisions. J. Neurosci. 35 (33), 11667–11673 (2015)

    Article  Google Scholar 

  65. Ditzen, M., Evers, F., Galizia, C.G.: Odor similarity does not influence the time needed for odor processing. Chem. Senses 28, 781–789 (2003)

    Article  Google Scholar 

  66. Wright, G.A., Carlton, M., Smith, B.H.: A honeybee’s ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. Behav. Neurosci. 123 (1), 36–43 (2009)

    Article  Google Scholar 

  67. Murlis, J., Elkinton, J.S., Cardé, R.T.: Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992)

    Article  Google Scholar 

  68. Celani, A., Villermaux, E., Vergassola, M.: Odor landscapes in turbulent environments. Phys. Rev. X 4, 041015 (2014)

    Google Scholar 

  69. Riffell, J.A., Shlizerman, E., Sanders, E., Abrell, L., Medina, B., Hinterwirth, A.J., Kutz, J.N.: Sensory biology. flower discrimination by pollinators in a dynamic chemical environment. Science 344 (6191), 1515–1518 (2014)

    Google Scholar 

  70. Soltys, M.A., Crimaldi, J.P.: Joint probabilities and mixing of isolated scalars emitted from parallel jets. J. Fluid Mech. 769, 130–153, 003 (2015)

    Google Scholar 

  71. Hopfield, J.J.: Olfactory Computation and Object Perception. Proc. Natl. Acad. Sci. U. S. A. 88 (15), 6462–6466 (1991)

    Article  Google Scholar 

  72. Fadamiro, H.Y., Baker, T.C.: Reproductive performance and longevity of female European corn borer, Ostrinia nubilalis: effects of multiple mating, delay in mating, and adult feeding. J. Insect Physiol. 45 (4), 385–392 (1999)

    Article  Google Scholar 

  73. Nikonov, A.A., Leal, W.S.: Peripheral coding of sex pheromone and a behavioral antagonist in the Japanese beetle, Popillia japonica. J. Chem. Ecol. 28 (5), 1075–1089 (2002)

    Article  Google Scholar 

  74. Saha, D., Leong, K., Li, C., Peterson, S., Siegel, G., Raman, B.: A spatiotemporal coding mechanism for background-invariant odor recognition. Nat. Neurosci. 16 (12), 1830–1839 (2013)

    Article  Google Scholar 

  75. Broome, B., Jayaraman, V., Laurent, G.: Encoding and decoding of overlapping odor sequences. Neuron 51, 467–482 (2006)

    Article  Google Scholar 

  76. Stierle, J., Galizia, C.G., Szyszka, P.: Millisecond stimulus onset-asynchrony enhances information about components in an odor mixture. J. Neurosci. 33 (14), 6060–6069 (2013)

    Article  Google Scholar 

  77. Andersson, M.N., Binyameen, M., Sadek, M.M., Schlyter, F.: Attraction modulated by spacing of pheromone components and anti-attractants in a bark beetle and a moth. J. Chem. Ecol. 37 (8), 899–911 (2011)

    Article  Google Scholar 

  78. Andersson, M.N., Larsson, M.C., Blazenec, M., Jakus, R., Zhang, Q.-H., Schlyter, F.: Peripheral modulation of pheromone response by inhibitory host compound in a beetle. J. Exp. Biol. 213 (Pt 19), 3332–3339 (2010)

    Article  Google Scholar 

  79. Su, C.-Y., Menuz, K., Reisert, J., Carlson, J.R.: Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492 (7427), 66–71 (2012)

    Article  Google Scholar 

  80. O’connell, R.J., Grant, A.J., Mayer, M.S., Mankin, R.W.: Morphological correlates of differences in pheromone sensitivity in insect sensilla. Science 220 (4604), 1408–1410 (1983)

    Article  Google Scholar 

  81. Nowotny, T., Stierle, J.S., Galizia, C.G., Szyszka, P.: Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation. Brain Res. 1536, 119–134 (2013)

    Article  Google Scholar 

  82. Linster, C., Sachse, S., Galizia, C.G.: Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli. J. Neurophysiol. 93 (6), 3410–3417 (2005)

    Article  Google Scholar 

  83. Shanbhag, S.R., Müller, B., Steinbrecht, R.A.: Atlas of olfactory organs of Drosophila melanogaster 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod Struct. Dev. 29 (3), 211–229 (2000)

    Google Scholar 

  84. Getchell, T.V., Margolis, F.L., Getchell, M.L.: Perireceptor and receptor events in vertebrate olfaction. Prog. Neurobiol. 23 (4), 317–345 (1984)

    Article  Google Scholar 

  85. Pelosi, P.: Perireceptor events in olfaction. J. Neurobiol. 30 (1), 3–19 (1996)

    Article  Google Scholar 

  86. Kaissling, K.-E.: Kinetics of olfactory responses might largely depend on the odorant-receptor interaction and the odorant deactivation postulated for flux detectors. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199 (11), 879–896 (2013)

    Article  Google Scholar 

  87. Leal, W.S.: Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58, 373–391 (2013)

    Article  Google Scholar 

  88. Vogt, R.G., Riddiford, L.M.: Pheromone binding and inactivation by moth antennae. Nature 293 (5828), 161–163 (1981)

    Article  Google Scholar 

  89. Benton, R., Sachse, S., Michnick, S.W., Vosshall, L.B.: Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4 (2), e20 (2006)

    Article  Google Scholar 

  90. Schneider, D., Lacher, V., Kaissling, K.E.: Die Reaktionsweise und das Reaktionsspektrum von Riechzellen bei Antheraea pernyi (Lepidoptera, Saturniidae). Z. Vgl. Physiol. 48, 632–662 (1964)

    Article  Google Scholar 

  91. Szyszka, P., Gerkin, R.C., Galizia, C.G., Smith, B.H.: High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proc. Natl. Acad. Sci. U. S. A. 111 (47), 16925–16930 (2014)

    Article  Google Scholar 

  92. Semmelroch, P., Grosch, W.: Studies on character impact odorants of coffee brews. J. Agric. Food Chem. 44, 537–543 (1996)

    Article  Google Scholar 

  93. Knudsen, J.T., Tollsten, L., Bergström, L.G.: Floral scents - a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33, 253–280 (1993)

    Article  Google Scholar 

  94. Root, C.M., Masuyama, K., Green, D.S., Enell, L.E., Nässel, D.R., Lee, C.-H., Wang, J.W.: A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59 (2), 311–321 (2008)

    Article  Google Scholar 

  95. Girardin, C.C., Kreissl, S., Galizia, C.G.: Inhibitory connections in the honeybee antennal lobe are spatially patchy. J. Neurophysiol. 109 (2), 332–343 (2013)

    Article  Google Scholar 

  96. Hong, E.J., Wilson, R.I.: Olfactory neuroscience: normalization is the norm. Curr. Biol. 23 (24), R1091–R1093 (2013)

    Article  Google Scholar 

  97. Hong, E.J., Wilson, R.I.: Simultaneous encoding of odors by channels with diverse sensitivity to inhibition. Neuron 85 (3), 573–589 (2015)

    Article  Google Scholar 

  98. Deisig, N., Giurfa, M., Lachnit, H., Sandoz, J.-C.: Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur. J. Neurosci. 24 (4), 1161–1174 (2006)

    Article  Google Scholar 

  99. Deisig, N., Giurfa, M., Sandoz, J.-C.: Antennal lobe processing increases separability of odor mixture representations in the honeybee. J. Neurophysiol. 103 (4), 2185–2194 (2010)

    Article  Google Scholar 

  100. Smith, B.H.: Analysis of interaction in binary odorant mixtures. Physiol. Behav. 65 (3), 397–407 (1998)

    Article  Google Scholar 

  101. Chandra, S., Smith, B.H.: An analysis of synthetic processing of odor mixtures in the honeybee (Apis mellifera). J. Exp. Biol. 201 (Pt 22), 3113–3121 (1998)

    Google Scholar 

  102. Deisig, N., Lachnit, H.,Giurfa, M., Hellstern, F.: Configural olfactory learning in honeybees: negative and positive patterning discrimination. Learn. Mem. 8 (2), 70–78 (2001)

    Article  Google Scholar 

  103. Deisig, N., Lachnit, H., Giurfa, M.: The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn. Mem. 9 (3), 112–121 (2002)

    Article  Google Scholar 

  104. Deisig, N., Lachnit, H., Sandoz, J.-C., Lober, K., Giurfa, M.: A modified version of the unique cue theory accounts for olfactory compound processing in honeybees. Learn. Mem. 10 (3), 199–208 (2003)

    Article  Google Scholar 

  105. Kamin, L.J.: Predictability, surprise, attention, and conditioning. Punishment and Aversive Behavior, pp. 279–296. Appleton-Century-Crofts, New York (1969)

    Google Scholar 

  106. Rescorla, R.A., Wagner, A.R., et al.: A theory of pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current Research and Theory, vol. 2, pp. 64–99. Appleton-Century Crofts, New York (1972)

    Google Scholar 

  107. Hosler, J.S., Smith, B.H.: Blocking and the detection of odor components in blends. J. Exp. Biol. 203 (Pt 18), 2797–2806 (2000)

    Google Scholar 

  108. Smith, B.H.: An analysis of blocking in odorant mixtures: an increase but not a decrease in intensity of reinforcement produces unblocking. Behav. Neurosci. 111 (1), 57–69 (1997)

    Article  Google Scholar 

  109. Smith, B.H., Cobey, S.: The olfactory memory of the honeybee Apis mellifera. II. Blocking between odorants in binary mixtures. J. Exp. Biol. 195, 91–108 (1994)

    Google Scholar 

  110. Gerber and Ullrich: No evidence for olfactory blocking in honeybee classical conditioning. J. Exp. Biol. 202 (Pt 13), 1839–1854 (1999)

    Google Scholar 

  111. Guerrieri, F., Lachnit, H., Gerber, B., Giurfa, M.: Olfactory blocking and odorant similarity in the honeybee. Learn. Mem. 12 (2), 86–95 (2005)

    Article  Google Scholar 

  112. Zars, T., Fischer, M., Schulz, R., Heisenberg, M.: Localization of a short-term memory in Drosophila. Science 288 (5466), 672–675 (2000)

    Article  Google Scholar 

  113. Becher, P.G., Bengtsson, M., Hansson, B.S., Witzgall, P.: Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors. J. Chem. Ecol. 36 (6), 599–607 (2010)

    Article  Google Scholar 

  114. Strutz, A., Soelter, J., Baschwitz, A., Farhan, A., Grabe, V., Rybak, J., Knaden, M., Schmuker, M., Hansson, B.S., Sachse, S.: Decoding odor quality and intensity in the Drosophila brain. Elife 3, e04147 (2014)

    Article  Google Scholar 

  115. Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H.D.I., Rabinovich, M.I.: Learning classification in the olfactory system of insects. Neural Comput. 16, 1601–1640 (2004)

    Article  MATH  Google Scholar 

  116. Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297 (5580), 359–365 (2002)

    Article  Google Scholar 

  117. Szyszka, P., Ditzen, M., Galkin, A., Galizia, C.G., Menzel, R.: Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J. Neurophysiol. 94 (5), 3303–3313 (2005)

    Article  Google Scholar 

  118. Lin, A.C., Bygrave, A.M., de Calignon, A., Lee, T., Miesenböck, G.: Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat. Neurosci. 17 (4), 559–568 (2014)

    Article  Google Scholar 

  119. Nowotny, T., Huerta, R., Abarbanel, H.D.I., Rabinovich, M.I.: Self-organization in the olfactory system: rapid odor recognition in insects. Biol Cybern. 93, 436–446 (2005)

    Article  MATH  Google Scholar 

  120. Huerta, R., Nowotny, T.: Fast and robust learning by reinforcement signals: explorations in the insect brain. Neural Comput. 21, 2123–2151 (2009)

    Article  MATH  Google Scholar 

  121. Finelli, L.A., Haney, S., Bazhenov, M., Stopfer, M., Sejnowski, T.J.: Synaptic learning rules and sparse coding in a model sensory system. PLoS Comput. Biol. 4 (4), e1000062 (2008)

    Article  MathSciNet  Google Scholar 

  122. Szyszka, P., Galkin, A., Menzel, R.: Associative and non-associative plasticity in Kenyon cells of the honeybee mushroom body. Front. Syst. Neurosci. 2, 3 (2008)

    Article  Google Scholar 

  123. Smith, D., Wessnitzer, J., Webb, B.: A model of associative learning in the mushroom body. Biol. Cybern. 99 (2), 89–103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  124. Wessnitzer, J., Young, J.M., Armstrong, J.D., Webb, B.: A model of non-elemental olfactory learning in Drosophila. J. Comput. Neurosci. 32 (2), 197–212 (2012)

    Article  Google Scholar 

  125. Bazhenov, M., Huerta, R., Smith, B.H.: A computational framework for understanding decision making through integration of basic learning rules. J. Neurosci. 33 (13), 5686–5697 (2013)

    Article  Google Scholar 

  126. Perry, C.J., Barron, A.B., Cheng, K.: Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdiscip. Rev. Cogn. Sci. 4 (5), 561–582 (2013)

    Article  Google Scholar 

  127. Papadopoulou, M., Cassenaer, S., Nowotny, T., Laurent, G.: Normalization for sparse encoding of odors by a wide-field interneuron. Science 332 (6030), 721–725 (2011)

    Article  Google Scholar 

  128. Assisi, C., Stopfer, M., Laurent, G., Bazhenov, M.: Adaptive regulation of sparseness by feedforward inhibition. Nat. Neurosci. 10 (9), 1176–1184 (2007)

    Article  Google Scholar 

  129. Gupta, N., Stopfer, M.: Functional analysis of a higher olfactory center, the lateral horn. J. Neurosci. 32 (24), 8138–8148 (2012)

    Article  Google Scholar 

  130. Kee, T., Sanda, P., Gupta, N., Stopfer, M., Bazhenov, M.: Feed-forward versus feedback inhibition in a basic olfactory circuit. PLoS Comput. Biol. 11 (10), e1004531 (2015)

    Article  Google Scholar 

  131. Grünewald, B.: Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera. J. Comp. Neurol. 404, 114–126 (1999)

    Article  Google Scholar 

  132. Andrew, S.C., Perry, C.J., Barron, A.B., Berthon, K., Peralta, V., Cheng, K.: Peak shift in honeybee olfactory learning. Anim. Cogn. 17 (5), 1177–1186 (2014)

    Article  Google Scholar 

  133. Campbell, R.A.A., Honegger, K.S., Qin, H., Li, W., Demir, E., Turner, G.C.: Imaging a population code for odor identity in the Drosophila mushroom body. J. Neurosci. 33 (25), 10568–10581 (2013)

    Article  Google Scholar 

  134. Nowotny, T., Rabinovich, M.I., Huerta, R., Abarbanel, H.D.I.: Decoding temporal information through slow lateral excitation in the olfactory system of insects. J. Comput. Neurosci. 15, 271–281 (2003)

    Article  Google Scholar 

  135. Nowotny, T., Berna, A.Z., Binions, R., Trowell, S.: Optimal feature selection for classifying a large set of chemicals using metal oxide sensors. Sens. Actuators B 187, 471–480 (2013); Selected Papers from the 14th International Meeting on Chemical Sensors.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nowotny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nowotny, T., Szyszka, P. (2017). Dynamics of Odor-Evoked Activity Patterns in the Olfactory System. In: Aranson, I., Pikovsky, A., Rulkov, N., Tsimring, L. (eds) Advances in Dynamics, Patterns, Cognition. Nonlinear Systems and Complexity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-53673-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53673-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53672-9

  • Online ISBN: 978-3-319-53673-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics