Skip to main content

Weak Transient Chaos

  • Chapter
  • First Online:
Advances in Dynamics, Patterns, Cognition

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 20))

  • 940 Accesses

Abstract

A phenomenon of weak transient chaos is discussed that is caused by sub-exponential divergence of trajectories in the basin of a non-chaotic attractor. Such a regime is not easy to detect, because conventional characteristics such as the largest Lyapunov exponent are non-positive. Here we study how such a divergence can be exposed and detected. First, we show that weak transient chaos can be exposed if a small random perturbation is added to the system, leading to positive values of the largest Lyapunov exponent. Second, we introduce an alternative definition of the Lyapunov exponent, which allows us to detect weak transient chaos in the deterministic unperturbed system. We show that this novel characteristic becomes positive, reflecting transient chaos. We demonstrate this phenomenon and its detection using a master–slave system where the master possesses a heteroclinic cycle attractor, while the slave is the Van-der-Pol–Duffing oscillator possessing a stable limit cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afraimovich, V., Zaslavsky, G.: Space-time complexity in Hamiltonian dynamics. Chaos: Interdiscip. J. Nonlinear Sci. 13 (2), 519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Afraimovich, V., Zhigulin, V., Rabinovich, M.: On the origin of reproducible sequential activity in neural circuits. Chaos: Interdiscip. J. Nonlinear Sci. 14 (4), 1123 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Afraimovich, V., Tristan, I., Huerta, R., Rabinovich, M.I.: Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model. Chaos: Interdiscip. J. Nonlinear Sci. 18 (4), 043103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Afraimovich, V., Ashwin, P., Kirk, V.: Robust heteroclinic and switching dynamics. Dyn. Syst. 25 (3), 285 (2010)

    Article  Google Scholar 

  5. Afraimovich, V., Cuevas, D., Young, T.: Sequential dynamics of master-slave systems. Dyn. Syst. 28 (2), 154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Afraimovich, V., Tristan, I., Varona, P., Rabinovich, M.: Transient dynamics in complex systems: heteroclinic sequences with multidimensional unstable manifolds. Discontinuity, Nonlinearity and Complexity 2 (1), 21 (2013)

    Google Scholar 

  7. Ashwin, P., Coombes, S., Nicks, R.: Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6 (1), 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canovas, J.: A guide to topological sequence entropy. In: Progress in Mathematical Biology Research, pp. 101–139. Nova Science Publishers, New York (2008)

    Google Scholar 

  9. Goldobin, D.S., Pikovsky, A.: Synchronization and desynchronization of self-sustained oscillators by common noise. Phys. Rev. E 71 (4), 045201 (2005)

    Article  MathSciNet  Google Scholar 

  10. Goodman, T.: Topological sequence entropy. Proc. Lond. Math. Soc. 29 (3), 331 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Physica D: Nonlinear Phenom. 7 (1), 181 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grebogi, C., Ott, E., Yorke, J.A.: Critical exponent of chaotic transients in nonlinear dynamical systems. Phys. Rev. Lett. 57 (11), 1284 (1986)

    Article  MathSciNet  Google Scholar 

  13. Klages, R.: From Hamiltonian Chaos to Complex Systems, pp. 3–42. Springer, Berlin (2013)

    Google Scholar 

  14. Kushnirenko, A.G.: On metric invariants of entropy type. Russ. Math. Surv. 22 (5), 53 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lai, Y.C., Tél, T.: Transient Chaos: Complex Dynamics on Finite Time Scales, vol. 173. Springer Science & Business Media, Dordrecht (2011)

    Google Scholar 

  16. Leoncini, X.: Hamiltonian Chaos Beyond the KAM Theory, pp. 143–192. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  17. Leoncini, X., Zaslavsky, G.M.: Jets, stickiness, and anomalous transport. Phys. Rev. E 65 (4), 046216 (2002)

    Google Scholar 

  18. Leoncini, X., Agullo, O., Benkadda, S., Zaslavsky, G.M.: Anomalous transport in Charney-Hasegawa-Mima flows. Phys. Rev. E 72 (2), 026218 (2005)

    Article  MathSciNet  Google Scholar 

  19. Pesin, Y., Zelerowicz, A., Zhao, Y.: Time rescaling of Lyapunov exponents. In: Aranson, I.S., Pikovsky, A., Rulkov, N.F., Tsimring, L. (eds.) Advances in Dynamics, Patterns, Cognition. Springer, Cham (2017)

    Google Scholar 

  20. Rabinovich, M.I., Simmons, A.N., Varona, P.: Dynamical bridge between brain and mind. Trends Cogn. Sci. 19 (8), 453 (2015)

    Article  Google Scholar 

  21. Rabinovich, M.I., Tristan, I., Varona, P.: Hierarchical nonlinear dynamics of human attention. Neurosci. Biobehav. Rev. 55, 18 (2015)

    Article  Google Scholar 

  22. Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H., Laurent, G.: Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87 (6), 068102 (2001)

    Article  Google Scholar 

  23. Szlenk, W.: On weakly conditionally compact dynamical systems. Stud. Math. 66 (1), 25 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Zaslavsky, G., Edelman, M.: Polynomial dispersion of trajectories in sticky dynamics. Phys. Rev. E 72 (3), 036204 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors dedicate this paper to the 75th anniversary of Mikhail Rabinovich. We wish him great health, and maintenance of his remarkable enthusiasm and energy, which generated and will generate many exciting ideas and fundamental works. The authors thank T. Young for useful discussions and Ya. Pesin for allowing them to read the manuscript of his chapter [19] in this volume. The authors acknowledge support by the RSF grant 14-41-00044 of the Russian Science Foundation during their stay at Nizhny Novgorod University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin S. Afraimovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Afraimovich, V.S., Neiman, A.B. (2017). Weak Transient Chaos. In: Aranson, I., Pikovsky, A., Rulkov, N., Tsimring, L. (eds) Advances in Dynamics, Patterns, Cognition. Nonlinear Systems and Complexity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-53673-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53673-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53672-9

  • Online ISBN: 978-3-319-53673-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics