Skip to main content

Anomalous Magnetism and Superconductivity in Lanthanide Metals at Extreme Pressure

  • Chapter
  • First Online:
Correlations in Condensed Matter under Extreme Conditions

Abstract

Under ambient pressure the only lanthanide known to superconduct is La, the superconducting state for the remaining lanthanides being suppressed by their strong local-moment magnetism . Except for possibly Ce, this magnetism is conventional and approximately obeys de Gennes scaling. Under high pressure both Ce and Eu exhibit superconductivity that may be unconventional, whereas the magnetic states of Dy, Tb, and Nd become anomalous, the magnetic ordering temperature of Dy surpassing ambient temperature at Mbar pressures. We suggest that these anomalously high magnetic ordering temperatures are an heretofore unrecognized feature of the Kondo lattice state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Debessai, T. Matsuoka, J.J. Hamlin, W. Bi, Y. Meng, K. Shimizu, J.S. Schilling, J. Phys.: Conf. Ser. 215(1), 012034 (2010). DOI 10.1088/1742-6596/215/1/012034

  2. M. Sakata, Y. Nakamoto, K. Shimizu, T. Matsuoka, Y. Ohishi, Phys. Rev. B 83, 220512 (2011). DOI 10.1103/PhysRevB.83.220512

    Article  ADS  Google Scholar 

  3. M. Debessai, J.J. Hamlin, J.S. Schilling, Phys. Rev. B 78, 064519 (2008). DOI 10.1103/PhysRevB.78.064519

    Article  ADS  Google Scholar 

  4. J. Wittig, Phys. Rev. Lett. 21, 1250 (1968). DOI 10.1103/PhysRevLett.21.1250

    Article  ADS  Google Scholar 

  5. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 55 (1948)

    Google Scholar 

  6. M.B. Maple, J. Wittig, K.S. Kim, Phys. Rev. Lett. 23, 1375 (1969). DOI 10.1103/PhysRevLett.23.1375

    Article  ADS  Google Scholar 

  7. M.B. Maple, Appl. Phys. 9(3), 179 (1976). DOI 10.1007/BF00900605

    Article  ADS  Google Scholar 

  8. K.S. Kim, M.B. Maple, Phys. Rev. B 2, 4696 (1970). DOI 10.1103/PhysRevB.2.4696

    Article  ADS  Google Scholar 

  9. J.W. Allen, R.M. Martin, Phys. Rev. Lett. 49, 1106 (1982). DOI 10.1103/PhysRevLett.49.1106

    Article  ADS  Google Scholar 

  10. S. Doniach, in Valence Instabilities and Related Narrow-Band Phenomena, ed. by R.D. Parks (Springer, Boston, 1977), pp. 169–176. DOI 10.1007/978-1-4615-8816-0_15

  11. Y.f. Yang, Z. Fisk, H.O. Lee, J.D. Thompson, D. Pines, Nature 454(7204), 611 (2008). DOI 10.1038/nature07157

  12. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954). DOI 10.1103/PhysRev.96.99

    Article  ADS  Google Scholar 

  13. K.N.R. Taylor, M.I. Darby, Physics of Rare Earth Solids (Chapman and Hall, London, 1972)

    Google Scholar 

  14. R.V. Colvin, S. Legvold, F.H. Spedding, Phys. Rev. 120, 741 (1960). DOI 10.1103/PhysRev.120.741

    Article  ADS  Google Scholar 

  15. B.T. Matthias, H. Suhl, E. Corenzwit, Phys. Rev. Lett. 1, 92 (1958). DOI 10.1103/PhysRevLett.1.92

    Article  ADS  Google Scholar 

  16. P.H. Barrett, D.A. Shirley, Phys. Rev. 131, 123 (1963). DOI 10.1103/PhysRev.131.123

    Article  ADS  Google Scholar 

  17. F.P. Bundy, K.J. Dunn, Phys. Rev. B 24, 4136 (1981). DOI 10.1103/PhysRevB.24.4136

    Article  ADS  Google Scholar 

  18. M. Debessai, T. Matsuoka, J.J. Hamlin, J.S. Schilling, K. Shimizu, Phys. Rev. Lett. 102, 197002 (2009). DOI 10.1103/PhysRevLett.102.197002

    Article  ADS  Google Scholar 

  19. W. Bi, J. Lim, G. Fabbris, J. Zhao, D. Haskel, E.E. Alp, M.Y. Hu, P. Chow, Y. Xiao, W. Xu, J.S. Schilling, Phys. Rev. B 93, 184424 (2016). DOI 10.1103/PhysRevB.93.184424

    Article  ADS  Google Scholar 

  20. J. Lim, G. Fabbris, D. Haskel, J.S. Schilling, Phys. Rev. B 91, 045116 (2015). DOI 10.1103/PhysRevB.91.045116

    Article  ADS  Google Scholar 

  21. J. Lim, G. Fabbris, D. Haskel, J.S. Schilling, Phys. Rev. B 91, 174428 (2015). DOI 10.1103/PhysRevB.91.174428

    Article  ADS  Google Scholar 

  22. J. Song, W. Bi, D. Haskel, J.S. Schilling, (in preparation)

    Google Scholar 

  23. D.D. Jackson, V. Malba, S.T. Weir, P.A. Baker, Y.K. Vohra, Phys. Rev. B 71, 184416 (2005). DOI 10.1103/PhysRevB.71.184416

    Article  ADS  Google Scholar 

  24. R. Patterson, C.K. Saw, J. Akella, J. Appl. Phys. 95(10), 5443 (2004). DOI 10.1063/1.1699489

    Article  ADS  Google Scholar 

  25. N.C. Cunningham, W. Qiu, K.M. Hope, H.P. Liermann, Y.K. Vohra, Phys. Rev. B 76, 212101 (2007). DOI 10.1103/PhysRevB.76.212101

    Article  ADS  Google Scholar 

  26. H. Hua, V.K. Vohra, J. Akella, S.T. Weir, R. Ahuja, B. Johansson, Rev. High Press. Sci. Technol. 7, 233 (1998)

    Article  Google Scholar 

  27. J.C. Duthie, D.G. Pettifor, Phys. Rev. Lett. 38, 564 (1977). DOI 10.1103/PhysRevLett.38.564

    Article  ADS  Google Scholar 

  28. G.S. Fleming, S.H. Liu, Phys. Rev. B 2, 164 (1970). DOI 10.1103/PhysRevB.2.164

    Article  ADS  Google Scholar 

  29. S.H. Liu, Phys. Rev. 127, 1889 (1962). DOI 10.1103/PhysRev.127.1889

    Article  ADS  Google Scholar 

  30. W. Bi, J. Song, Y. Deng, E. Alp, J.S. Schilling, (in preparation)

    Google Scholar 

  31. Z.P. Yin, W.E. Pickett, Phys. Rev. B 74, 205106 (2006). DOI 10.1103/PhysRevB.74.205106

    Article  ADS  Google Scholar 

  32. G. Fabbris, T. Matsuoka, J. Lim, J.R.L. Mardegan, K. Shimizu, D. Haskel, J.S. Schilling, Phys. Rev. B 88, 245103 (2013). DOI 10.1103/PhysRevB.88.245103

    Article  ADS  Google Scholar 

  33. G.K. Samudrala, G.M. Tsoi, S.T. Weir, Y.K. Vohra, High Press. Res. 34(2), 266 (2014). DOI 10.1080/08957959.2014.903946

    Article  ADS  Google Scholar 

  34. W. Bi, J. Song, G. Fabbris, D. Haskel, J.S. Schilling, (in preparation)

    Google Scholar 

  35. S.K. Dhar, S.K. Malik, R. Vijayaraghavan, J. Phys. C: Solid State Phys. 14(11), L321 (1981). DOI 10.1088/0022-3719/14/11/008

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to congratulate Professor Renato Pucci on the occasion of his 70th birthday. We appreciate the permission of Wenli Bi and Jing Song to cite some of their unpublished results on Dy, Nd, and Y(Nd) alloys and thank Wenli Bi for proofreading the manuscript. We acknowledge the help of A. Gangopadhyay in preparing the dilute magnetic alloys. This work was supported by the National Science Foundation (NSF) through Grant No. DMR-1104742 and by the Carnegie/DOE Alliance Center (CDAC) through NNSA/DOE Grant No. DE-FC52-08NA28554. Work at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, under contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Schilling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schilling, J.S. (2017). Anomalous Magnetism and Superconductivity in Lanthanide Metals at Extreme Pressure. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_4

Download citation

Publish with us

Policies and ethics