Skip to main content

Hydrogen-Bonded Systems Under Intense Electric Fields

  • Chapter
  • First Online:
Correlations in Condensed Matter under Extreme Conditions

Abstract

Thermal effects induced on matter by electric fields are well known and largely understood [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.J. English, C.J. Waldron, Phys. Chem. Chem. Phys. 17, 12407 (2015). DOI 10.1039/C5CP00629E

    Article  Google Scholar 

  2. D.I. de Pomerai, B. Smith, A. Dawe, K. North, T. Smith, D.B. Archer, I.R. Duce, D. Jones, E.P.M. Candido, FEBS Letters 543(1–3), 93 (2003). DOI 10.1016/S0014-5793(03)00413-7

    Article  Google Scholar 

  3. M. Porcelli, G. Cacciapuoti, S. Fusco, R. Massa, G. d’Ambrosio, C. Bertoldo, M.D. Rosa, V. Zappia, FEBS Letters 402(2–3), 102 (1997). DOI 10.1016/S0014-5793(96)01505-0

    Article  Google Scholar 

  4. A.C. Aragonés, N.L. Haworth, N. Darwish, S. Ciampi, N.J. Bloomfield, G.G. Wallace, I. Diez-Perez, M.L. Coote, Nature 531(7592), 88 (2016). DOI 10.1038/nature16989

    Article  ADS  Google Scholar 

  5. D. Marx, J. Hutter, Ab initio Molecular Dynamics. Basic Theory and Advanced Methods (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  6. P. Umari, A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002). DOI 10.1103/PhysRevLett.89.157602

    Article  ADS  Google Scholar 

  7. M.V. Berry, Proc. R. Soc. Lond. A 392(1802), 45 (1984). DOI 10.1098/rspa.1984.0023

    Article  ADS  Google Scholar 

  8. R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47, 1651 (1993). DOI 10.1103/PhysRevB.47.1651

    Article  ADS  Google Scholar 

  9. R. Resta, Rev. Mod. Phys. 66, 899 (1994). DOI 10.1103/RevModPhys.66.899

    Article  ADS  Google Scholar 

  10. G. Desiraju, J. Vittal, A. Ramanan, Crystal Engigneering. A textbook (World Scientific, Singapore, 2011)

    Book  Google Scholar 

  11. A.M. Saitta, F. Saija, P.V. Giaquinta, Phys. Rev. Lett. 108(20), 207801 (2012). DOI 10.1103/PhysRevLett.108.207801

    Article  ADS  Google Scholar 

  12. G. Cassone, F. Creazzo, P.V. Giaquinta, F. Saija, A. Marco Saitta, Phys. Chem. Chem. Phys. 18, 23164 (2016). DOI 10.1039/C6CP03926J

    Article  Google Scholar 

  13. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). DOI 10.1103/PhysRevLett.55.2471

    Article  ADS  Google Scholar 

  14. S.J. Suresh, A.L. Prabhu, A. Arora, J. Chem. Phys. 126(13), 134502 (2007). DOI 10.1063/1.2647105

    Article  ADS  Google Scholar 

  15. G. Cassone, P.V. Giaquinta, F. Saija, A.M. Saitta, J. Phys. Chem. B 118(16), 4419 (2014). DOI 10.1021/jp5021356

    Article  Google Scholar 

  16. G. Cassone, P.V. Giaquinta, F. Saija, A.M. Saitta, J. Phys. Chem. B 118(44), 12717 (2014). DOI 10.1021/jp507376v

    Article  Google Scholar 

  17. E. Schwegler, G. Galli, F.m.c. Gygi, R.Q. Hood, Phys. Rev. Lett. 87, 265501 (2001). DOI 10.1103/PhysRevLett.87.265501

    Article  ADS  Google Scholar 

  18. K. Kaila, B.R. Ransom, pH and brain function (Wiley, New York, 1998)

    Google Scholar 

  19. E.I. Zoulias, N. Lymberoupolos, Hydrogen-Based Autonomous Power Systems (Springer, Berlin, 2008)

    Google Scholar 

  20. C.J.T. Grotthuss, Ann. Chim. LVIII, 54 (1806)

    Google Scholar 

  21. N. Agmon, J. Phys. Chem. A 109(1), 13 (2005). DOI 10.1021/jp047465m

    Article  Google Scholar 

  22. G. Cassone, P.V. Giaquinta, F. Saija, A.M. Saitta, J. Chem. Phys. 142(5), 054502 (2015). DOI 10.1063/1.4907010

    Article  ADS  Google Scholar 

  23. S.L. Miller, Science 117(3046), 528 (1953). DOI 10.1126/science.117.3046.528

    Article  ADS  Google Scholar 

  24. A.M. Saitta, F. Saija, Proc. Natl. Acad. Sci USA 111(38), 13768 (2014). DOI 10.1073/pnas.1402894111

    Article  ADS  Google Scholar 

  25. Z. Hammadi, J.P. Astier, R. Morin, S. Veesler, Cryst. Growth Des. 7(8), 1472 (2007). DOI 10.1021/cg070108r

    Article  Google Scholar 

  26. Z. Hammadi, J.P. Astier, R. Morin, S. Veesler, Cryst. Growth Des. 9(8), 3346 (2009). DOI 10.1021/cg900150n

    Article  Google Scholar 

  27. Z. Hammadi, M. Descoins, E. Salançon, R. Morin, Appl. Phys. Lett. 101(24), 243110 (2012). DOI 10.1063/1.4770516

    Article  ADS  Google Scholar 

  28. S. Laporte, F. Finocchi, L. Paulatto, M. Blanchard, E. Balan, F. Guyot, A.M. Saitta, Phys. Chem. Chem. Phys. 17, 20382 (2015). DOI 10.1039/C5CP02097B

    Article  Google Scholar 

  29. L. Vlcek, Z. Zhang, M.L. Machesky, P. Fenter, J. Rosenqvist, D.J. Wesolowski, L.M. Anovitz, M. Predota, P.T. Cummings, Langmuir 23(9), 4925 (2007). DOI 10.1021/la063306d

    Article  Google Scholar 

  30. Y. Bronstein, P. Depondt, L.E. Bove, R. Gaal, A.M. Saitta, F. Finocchi, Phys. Rev. B 93, 024104 (2016). DOI 10.1103/PhysRevB.93.024104

    Article  ADS  Google Scholar 

  31. B. Reischl, J. Köfinger, C. Dellago, Mol. Phys. 107(4-6), 495 (2009). DOI 10.1080/00268970902865493

    Article  ADS  Google Scholar 

  32. B. Sellner, M. Valiev, S.M. Kathmann, J. Phys. Chem. B 117(37), 10869 (2013). DOI 10.1021/jp405578w

    Article  Google Scholar 

  33. G. Cassone, F. Pietrucci, F. Saija, F. Guyot, A.M. Saitta, (2016). Submitted

    Google Scholar 

  34. A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 99(20), 12562 (2002). DOI 10.1073/pnas.202427399

    Article  ADS  Google Scholar 

  35. F. Pietrucci, A.M. Saitta, Proc. Natl. Acad. Sci. USA 112(49), 15030 (2015). DOI 10.1073/pnas.1512486112

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors dedicate this chapter to Professor Renato Pucci, a heartfelt homage of younger and less young scholars who all started their own journey in science and research at the University of Messina. In particular, PVG would like to thank Renato for his enduring friendship which has accompanied him across the years, since the very first professional experiences they shared as visiting scientists at the Theoretical Chemistry Department of the University of Oxford, when it was chaired by Coulson Professor Norman H. March ... forsan et haec olim meminisse iuvabit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Giaquinta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cassone, G., Saija, F., Saitta, A.M., Giaquinta, P.V. (2017). Hydrogen-Bonded Systems Under Intense Electric Fields. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_16

Download citation

Publish with us

Policies and ethics