Skip to main content

Peierls and Spin-Density Instability: From Polyacetylene to Graphene

  • Chapter
  • First Online:
Correlations in Condensed Matter under Extreme Conditions
  • 689 Accesses

Abstract

The \(sp^2\) hydrocarbon conjugated molecules have remarkable properties mainly due to their delocalized \(\pi \)-electron system. They are at the basis of novel materials that have been produced and studied in the last few decades and which have found an extensive number of applications and are expected to be more and more involved in the development of nanostructures . The properties of these molecules are determined not only by external factors, like doping, but also by their intrinsic structure that can be affected by the presence of the Peierls and spin-density instabilities. The paper presents a short overview on the effects of these types of structural rearrangements on the molecular properties and how they develop from strictly one-dimensional to two-dimensional cases. Specifically, we will consider the one-dimensional polyacetylene polymer, the two-dimensional graphene molecule and, as a case intermediate between one and two dimensions, the quasi-one dimensional polyacenes molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Meunier, A.G. Souza Filho, E.B. Barros, M.S. Dresselhaus, Rev. Mod. Phys. 88, 025005 (2016). DOI 10.1103/RevModPhys.88.025005

  2. W. Su, J. Schrieffer, A. Heeger, Phys. Rev. B 22(4), 2099 (1980). DOI 10.1103/PhysRevB.22.2099

  3. W. Su, J. Schrieffer, A. Heeger, Phys. Rev. B 28(2), 1138 (1983). DOI 10.1103/PhysRevB.28.1138

    Article  ADS  Google Scholar 

  4. M. Barborini, L. Guidoni, J. Chem. Theory and Comp. 11(9), 4109 (2015). DOI 10.1021/acs.jctc.5b00427

    Article  Google Scholar 

  5. A.J. Heeger, Rev. Mod. Phys. 73, 681 (2001). DOI 10.1103/RevModPhys.73.681

  6. M. Baldo, A. Grassi, R. Pucci, P. Tomasello, J. Chem. Phys. 77(5), 2438 (1982). DOI 10.1063/1.444112

    Article  ADS  Google Scholar 

  7. R. Pucci, N.H. March, Phys. Lett. A 96(2), 105 (1983). DOI 10.1016/0375-9601(83)90602-3

    Article  ADS  Google Scholar 

  8. P.O. Löwdin, Phys. Rev. 97, 1509 (1955). DOI 10.1103/PhysRev.97.1509

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Rayne, K. Forest, Comp. Theor. Chem. 976(1–3), 105 (2011). DOI 10.1016/j.comptc.2011.08.010

  10. V. Heine, Group Theory in Quantum Mechanics (Pergamon Press, London, 1960)

    MATH  Google Scholar 

  11. L.N. Cooper, Phys. Rev. 104, 1189 (1956). DOI 10.1103/PhysRev.104.1189

    Article  ADS  Google Scholar 

  12. N.N. Tyutyulkov, Int J. Quantum Chem. 9(4), 683 (1975). DOI 10.1002/qua.560090410

    Article  Google Scholar 

  13. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004). DOI 10.1126/science.1102896

    Article  ADS  Google Scholar 

  14. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009). DOI 10.1103/RevModPhys.81.109

  15. P.R. Wallace, Phys. Rev. 71, 622 (1947). DOI 10.1103/PhysRev.71.622

    Article  ADS  Google Scholar 

  16. R. Pucci, M. Baldo, A. Martín-Rodero, G. Piccitto, P. Tomasello, Int. J. Quantum Chem. 26(5), 783 (1984). DOI 10.1002/qua.560260518

    Article  Google Scholar 

Download references

Acknowledgements

This short note is based on the early works performed in collaboration with Professor Renato Pucci. To him I express my gratitude for the enjoyment of our common work and for the many years of friendship that has lasted since then.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baldo, M. (2017). Peierls and Spin-Density Instability: From Polyacetylene to Graphene. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_11

Download citation

Publish with us

Policies and ethics