Skip to main content

Can the d-Orbital Splitting Unveil the Local Structure of Cu\(^{2+}\) Ions? Study on the K\(_2\)ZnF\(_4\):Cu\(^{2+}\) Archetype

  • Chapter
  • First Online:
Correlations in Condensed Matter under Extreme Conditions
  • 667 Accesses

Abstract

Jahn-Teller (JT) transition-metal ions like Cu\(^{2+}\) (\(d^9\)) or Mn\(^{3+}\) (\(d^4\)) in octahedral coordination exhibit larger distortions than non-JT ions like Mn\(^{2+}\) or Fe\(^{3+}\) (both \(d^5\)) in oxides and halides with perovskite type structure. Their mutual interactions eventually determine the type of distortion and the way they couple each other, being at the core of some relevant physical properties. When a JT ion is introduced as an impurity in an octahedral or nearly octahedral site, it provokes a low-symmetry lattice distortion as a consequence of the instability associated with the electronic ground state degeneracy, \(e_g (x^2 -y^2, 3z^2 -r^2 )\). The distortion degree, \(\rho \), depends mainly on the electron-ion coupling interaction related to the \(E\otimes e\) JT effect, and it is modulated by the host crystal structure. This scenario explains for example why Cu\(^{2+}\) induces a large distortion of the CuF\(_6\) octahedron, when Cu\(^{2+}\) replaces Zn\(^{2+}\) either in the perovskite KZnF\(_3\) or in the layered perovskite K\(_2\)ZnF\(_4\). However, there is a long debate about whether the splitting, \(\varDelta _e\) of the \(O_h\) \(e_g (x^2 -y^2, 3z^2 -r^2 )\) orbitals into \(a_{1g}\) and \(b_{1g}\) is proportional to \(\rho \) or \(\varDelta _e\) contains additional contributions from the rest-of-the-lattice (crystal anisotropy) aside \(\rho \). Elucidation of this controversy is important in order to establish structural correlations between \(\varDelta _e\) and \(\rho \), for an eventual local structure determination of JT impurities from optical spectroscopy. Recent studies on K\(_2\)ZnF\(_4\):Cu\(^{2+}\) report different views of this problem. Here we show that \(\varDelta _e\) scales linearly with \(\rho \). High pressure experiments and JT-ion compound series of different dimensionality give support for the proposed scenario and provide structural correlations relating \(\rho \) and \(\varDelta _e\) in Cu\(^{2+}\) and Mn\(^{3+}\) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Aguado, F. Rodríguez, R. Valiente, J.P. Itiè, M. Hanfland, Phys. Rev. B 85, 100101 (2012). DOI 10.1103/PhysRevB.85.100101

    Article  ADS  Google Scholar 

  2. F. Siringo, R. Pucci, N.H. March, High Pressure Res. 2(2), 109 (1990). DOI 10.1080/08957959008201442

    Article  ADS  Google Scholar 

  3. G.G.N. Angilella, R. Pucci, F. Siringo, Phys. Rev. B 54, 15471 (1996). DOI 10.1103/PhysRevB.54.15471

    Article  ADS  Google Scholar 

  4. G.G.N. Angilella, A. Sudbø, R. Pucci, Int. J. Mod. Phys. B 14, 3306 (2000). DOI 10.1142/S0217979200003782

    Article  ADS  Google Scholar 

  5. R. Citro, G.G.N. Angilella, M. Marinaro, R. Pucci, Phys. Rev. B 71, 134525 (2005). DOI 10.1103/PhysRevB.71.134525

    Article  ADS  Google Scholar 

  6. H.A. Jahn, E. Teller, Proc. Roy. Soc. (London) A 161(905), 220 (1937). DOI 10.1098/rspa.1937.0142

  7. R.G. Burns, Mineralogical applications of crystal field theory (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  8. D. Oelkrug, Berichte Bunsengesellschaft für physikalische Chemie 70(7), 736 (1966). DOI 10.1002/bbpc.19660700710

    Google Scholar 

  9. D. Reinen, M. Atanasov, Mag. Res. Rev. 15, 167 (1991)

    Google Scholar 

  10. M.A. Hitchman, Comments Inorg. Chem. 15(3–4), 197 (1994). DOI 10.1080/02603599408035843

    Article  Google Scholar 

  11. J.S. Griffith, The Theory of Transition Metal Ions (Cambridge University Press, Cambridge, 1980)

    MATH  Google Scholar 

  12. D. Reinen, Inorg. Chem. 51(8), 4458 (2012). DOI 10.1021/ic202209c

    Article  Google Scholar 

  13. J.A. Aramburu, J.M. García-Lastra, P. García-Fernández, M.T. Barriuso, M. Moreno, Inorg. Chem. 52(12), 6923 (2013). DOI 10.1021/ic400105z

    Article  Google Scholar 

  14. A. Tressaud, J.M. Dance, Relationships between structure and low-dimensional magnetism in fluorides (Springer Berlin Heidelberg, Berlin, Heidelberg, 1982), vol. 52, pp. 87–146. DOI 10.1007/BFb0111297

  15. E.G. Tulsky, J.R. Long, Chem. Mater. 13(4), 1149 (2001). DOI 10.1021/cm0007858

    Article  Google Scholar 

  16. M.C. Marco de Lucas, F. Rodriguez, M. Moreno, A. Tressaud, J. Phys.: Condens. Matter 6(31), 6353 (1994). DOI 10.1088/0953-8984/6/31/034

    ADS  Google Scholar 

  17. M.C. Marco De Lucas, F. Rodríguez, C. Prieto, M. Verdaguer, H.U. Güdel, J. Phys. Chem. Solids 56(7), 995 (1995). DOI 10.1016/0022-3697(95)00041-0

    Article  Google Scholar 

  18. L.J. de Jongh, D.J. Breed, Solid State Commun. 15(6), 1061 (1974). DOI 10.1016/0038-1098(74)90531-6

    Article  ADS  Google Scholar 

  19. J. Goodyear, D.J. Kennedy, Acta Cryst. B 29(4), 744 (1973). DOI 10.1107/S0567740873003286

    Article  Google Scholar 

  20. R.E. Schmidt, M. Welsch, S. Kummer-Dörner, D. Babel, Z. Anorg. Allg. Chemie 625(4), 637 (1999). DOI 10.1002/(SICI)1521-3749(199904)625:4<637::AID-ZAAC637>3.0.CO;2-N

    Article  Google Scholar 

  21. J. Goodyear, E.M. Ali, G.A. Steigmann, Acta Cryst. B 33(9), 2932 (1977). DOI 10.1107/S0567740877009868

    Article  Google Scholar 

  22. K. Iwasa, M. Nishi, H. Ikeda, J. Suzuki, J. Phys. Soc. Jpn. 63(5), 1900 (1994). DOI 10.1143/JPSJ.63.1900

    Article  ADS  Google Scholar 

  23. F. Rodríguez, P.N. nez, M.C. Marco de Lucas, J. Solid State Chem. 110(2), 370 (1994). DOI 10.1006/jssc.1994.1182

  24. F. Rodriguez, F. Aguado, J. Chem. Phys. 118(24), 10867 (2003). DOI 10.1063/1.1569847

    Article  ADS  Google Scholar 

  25. R. Valiente, F. Rodriguez, J. Phys. Chem. Solids 57(5), 571 (1996). DOI 10.1016/0022-3697(96)00293-4

    Article  ADS  Google Scholar 

  26. R. Valiente, F. Rodríguez, Phys. Rev. B 60, 9423 (1999). DOI 10.1103/PhysRevB.60.9423

    Article  ADS  Google Scholar 

  27. M.J. Riley, L. Dubicki, G. Moran, E.R. Krausz, I. Yamada, Chem. Phys. 145(3), 363 (1990). DOI 10.1016/0301-0104(90)87045-D

    Article  ADS  Google Scholar 

  28. F. Aguado, F. Rodríguez, R. Valiente, J.P. Itié, P. Munsch, Phys. Rev. B 70, 214104 (2004). DOI 10.1103/PhysRevB.70.214104

    Article  ADS  Google Scholar 

  29. M.C. Marco de Lucas, F. Rodríguez, M. Moreno, Phys. Rev. B 50, 2760 (1994). DOI 10.1103/PhysRevB.50.2760

    Article  ADS  Google Scholar 

  30. E. Herdtweck, D. Babel, Z. Kristallogr. 153(1–4), 189 (1980). DOI 10.1524/zkri.1980.153.14.189

  31. A. Tressaud, S. Khaïroun, J.P. Chaminade, M. Couzi, Physica Status Solidi A 98(2), 417 (1986). DOI 10.1002/pssa.2210980212

    Article  ADS  Google Scholar 

  32. J.M. Dance, J.L. Soubeyroux, R. Sabatier, L. Fournes, A. Tressaud, P. Hagenmuller, J. Magn. Mag. Mat. 15, 534 (1980). DOI 10.1016/0304-8853(80)91164-6

    Article  ADS  Google Scholar 

  33. M. Hidaka, Z.Y. Zhou, B.M. Wanklyn, Physica Status Solidi A 115(1), 149 (1989). DOI 10.1002/pssa.2211150114

    Article  ADS  Google Scholar 

  34. D. Reinen, G. Steffen, M.A. Hitchman, H. Stratemeier, L. Dubicki, E.R. Krausz, M.J. Riley, H.E. Mathies, K. Recker, F. Wallrafen, Chem. Phys. 155(1), 117 (1991). DOI 10.1016/0301-0104(91)87012-K

    Article  ADS  Google Scholar 

  35. J. Ruiz-Fuertes, A. Segura, F. Rodríguez, D. Errandonea, M.N. Sanz-Ortiz, Phys. Rev. Lett. 108, 166402 (2012). DOI 10.1103/PhysRevLett.108.166402

    Article  ADS  Google Scholar 

  36. H. Ikeda, J. Phys. Soc. Jpn. 37(3), 660 (1974). DOI 10.1143/JPSJ.37.660

    Article  ADS  Google Scholar 

  37. D. Babel, E. Herdtweck, Z. Anorg. Allg. Chem. 487(1), 75 (1982). DOI 10.1002/zaac.19824870108

    Article  Google Scholar 

  38. J. Ferguson, T.E. Wood, H.J. Guggenheim, Inorg. Chem. 14(1), 177 (1975). DOI 10.1021/ic50143a038

    Article  Google Scholar 

  39. P. Day, C.D. Flint, in Electronic Structure and Magnetism of Inorganic Compounds, vol. 6, ed. by P. Day (The Royal Society of Chemistry, 1980), pp. 148–209. DOI 10.1039/9781847555960-00148

  40. A.B.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1984)

    Google Scholar 

Download references

Acknowledgements

Thanks are due to R. Valiente, F. Aguado, I. Hernandez, M. N. Sanz Ortiz, P. García-Fernández, and M. Moreno for helpful discussions on JT systems. Financial support from Projects MAT2015-69508-P (MINECO/FEDER) and MAT2015-71070-REDC (MALTA TEAM/MINECO) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodríguez, F. (2017). Can the d-Orbital Splitting Unveil the Local Structure of Cu\(^{2+}\) Ions? Study on the K\(_2\)ZnF\(_4\):Cu\(^{2+}\) Archetype. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_1

Download citation

Publish with us

Policies and ethics