Skip to main content

Molecular and Cellular Mechanisms of Carcinogenesis in the Large Bowel

  • Chapter
  • First Online:
Mechanisms of Molecular Carcinogenesis – Volume 2

Abstract

Colorectal cancer is one of the most intensively studied cancers with well-documented precursor lesions. The acquisition of genomic instability plays a central role in its development. In the majority of cases, tumor growth results from different combinations of sporadic genetic events and epigenetic alterations, resulting in increased cell proliferation and decreased cell death. Three main pathways have been identified: chromosomal instability (CIN) pathway, microsatellite instability (MSI) pathway, and CpG island hypermethylation phenotype (CIMP) pathway. Within these pathways, somatic BRAF and/or KRAS mutations have been identified as major players. Up to 5% of colorectal cancers develop in the setting of inherited syndromes, such as Lynch syndrome, familial adenomatous polyposis, MUTYH-associated polyposis, and certain hamartomatous polyposis conditions, including Peutz-Jeghers syndrome and juvenile polyposis syndrome. In this chapter, we describe the above-mentioned pathways and syndromes in detail, referring to different molecular events and different precursor lesions. In the last part, we address possible future perspectives in colorectal carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cancer fact sheet n°297. WHO Media Center. 2015. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 2 Dec 2015.

  2. GLOBOCAN. Estimated cancer incidence, mortality and prevalence in 2012 (2012) International Agency for Research on Cancer–WHO. 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed 2 Dec 2015.

  3. Setaffy L, Langner C. Microsatellite instability in colorectal cancer: clinicopathological significance. Pol J Pathol. 2015;66:203–21.

    Article  PubMed  Google Scholar 

  4. Bosman FT, Yua P. Molecular pathology of colorectal cancer. Pol J Pathol. 2014;65:257–66.

    Article  PubMed  Google Scholar 

  5. Samadder NJ, Vierkant RA, Tillmans LS, et al. Associations between colorectal cancer molecular markers and pathways with clinicopathologic features in older women. Gastroenterology. 2013;145:348–56. doi:10.1053/j.gastro.2013.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer—analyses of co-horts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.

    Article  CAS  PubMed  Google Scholar 

  7. Grady WM. Genetic testing for high-risk colon cancer patients. Gastroenterology. 2003;124:1574–94.

    Article  CAS  PubMed  Google Scholar 

  8. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138:2088–100. doi:10.1053/j.gastro.2009.12.066.

    Article  CAS  PubMed  Google Scholar 

  9. Jasperson KW, Tuohy TM, Neklason DW. Hereditary and familial colon cancer. Gastroenterology. 2010;138:2044–58. doi:10.1053/j.gastro.2010.01.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2009;138:2059–72. doi:10.1053/j.gastro.2009.12.065.

    Article  Google Scholar 

  11. Takayama T, Ohi M, Hayashi T, et al. Analysis of K-ras, APC, and beta-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology. 2001;121:599–611.

    Article  CAS  PubMed  Google Scholar 

  12. Langner C. Serrated and non-serrated precursor lesions of colorectal cancer. Dig Dis. 2015;33:28–37. doi:10.1159/000366032.

    Article  PubMed  Google Scholar 

  13. Bettington M, Walker N, Clouston A, et al. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology. 2013;62:367–86. doi:10.1111/his.12055.

    Article  PubMed  Google Scholar 

  14. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  15. Bodmer WF, Bailey CJ, Bodmer J, et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 1987;328:614–6.

    Article  CAS  PubMed  Google Scholar 

  16. White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142:219–32. doi:10.1053/j.gastro.2011.12.001.

    Article  CAS  PubMed  Google Scholar 

  17. Leslie A, Carey FA, Pratt NR, et al. The colorectal adenoma-carcinoma sequence. Br J Surg. 2002;89:845–60.

    Article  CAS  PubMed  Google Scholar 

  18. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.

    Article  CAS  PubMed  Google Scholar 

  19. Claes K, Dahan K, Tejpar S, et al. The genetics of familial adenomatous polyposis (FAP) and MutYH-associated polyposis (MAP). Acta Gastroenterol Belg. 2011;74:421–6.

    PubMed  Google Scholar 

  20. Burt RW, Leppert MF, Slattery ML, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004;127:444–51.

    Article  PubMed  Google Scholar 

  21. Acharya S, Wilson T, Gradia S, et al. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci U S A. 1996;93:13629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kadyrov FA, Dzantiev L, Constantin N, et al. Endonucleolytic function of MutLalpha in human mismatch repair. Cell. 2006;126:297–308.

    Article  CAS  PubMed  Google Scholar 

  23. Young J, Simms LA, Biden KG, et al. Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am J Pathol. 2001;159:2107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sideris M, Papagrigoriadis S. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res. 2014;34:2061–8.

    CAS  PubMed  Google Scholar 

  25. Boland CR, Koi M, Chang DK, et al. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch syndrome: from bench to bedside. Familial Cancer. 2008;7:41–52.

    Article  CAS  PubMed  Google Scholar 

  26. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.

    CAS  PubMed  Google Scholar 

  27. Mead LJ, Jenkins MA, Young J, et al. Microsatellite instability markers for identifying early-onset colorectal cancers caused by germ-line mutations in DNA mismatch repair genes. Clin Cancer Res. 2007;13:2865–9.

    Article  CAS  PubMed  Google Scholar 

  28. Suraweera N, Duval A, Reperant M, et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology. 2002;123:1804–11.

    Article  CAS  PubMed  Google Scholar 

  29. Patil DT, Bronner MP, Portier BP, et al. A five-marker panel in a multiplex PCR accurately detects microsatellite instability-high colorectal tumors without control DNA. Diagn Mol Pathol. 2012;21:127–33. doi:10.1097/PDM.0b013e3182461cc3.

    Article  CAS  PubMed  Google Scholar 

  30. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50:113–30.

    Article  CAS  PubMed  Google Scholar 

  31. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–87. doi:10.1053/j.gastro.2009.12.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lynch HT, Smyrk T, Lynch JF. Molecular genetics and clinical-pathology features of hereditary nonpolyposis colorectal carcinoma (Lynch syndrome): historical journey from pedigree anecdote to molecular genetic confirmation. Oncology. 1998;55:103–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919–32.

    Article  CAS  PubMed  Google Scholar 

  34. Hampel H, Frankel WL, Martin E, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol. 2008;26:5783–8. doi:10.1200/JCO.2008.17.5950.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cicek MS, Lindor NM, Gallinger S, et al. Quality assessment and correlation of microsatellite instability and immunohistochemical markers among population- and clinic-based colorectal tumors results from the Colon Cancer Family Registry. J Mol Diagn. 2011;13:271–81. doi:10.1016/j.jmoldx.2010.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bellizzi AM, Frankel WL. Colorectal cancer due to deficiency in DNA mismatch repair function: a review. Adv Anat Pathol. 2009;16:405–17. doi:10.1097/PAP.0b013e3181bb6bdc.

    Article  CAS  PubMed  Google Scholar 

  37. Dunlop MG, Farrington SM, Carothers AD, et al. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet. 1997;6:105–10.

    Article  CAS  PubMed  Google Scholar 

  38. Quehenberger F, Vasen HF, van Houwelingen HC. Risk of colorectal and endometrial cancer for carriers of mutations of the hMLH1 and hMSH2 gene: correction for ascertainment. J Med Genet. 2005;42:491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jenkins MA, Baglietto L, Dowty JG, et al. Cancer risks for mismatch repair gene mutation carriers: a population-based early onset case-family study. Clin Gastroenterol Hepatol. 2006;4:489–98.

    Article  CAS  PubMed  Google Scholar 

  40. Alarcon F, Lasset C, Carayol J, et al. Estimating cancer risk in HNPCC by the GRL method. Eur J Hum Genet. 2007;15:831–6.

    Article  CAS  PubMed  Google Scholar 

  41. Senter L, Clendenning M, Sotamaa K, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology. 2008;135:419–28. doi:10.1053/j.gastro.2008.04.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choi YH, Cotterchio M, McKeown-Eyssen G, et al. Penetrance of colorectal cancer among MLH1/MSH2 carriers participating in the colorectal cancer familial registry in Ontario. Hered Cancer Clin Pract. 2009;7:14. doi:10.1186/1897-4287-7-14.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Baglietto L, Lindor NM, Dowty JG, et al. Risks of Lynch syndrome cancers for MSH6 mutation carriers. J Natl Cancer Inst. 2010;102:193–201. doi:10.1093/jnci/djp473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonadona V, Bonaïti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305:2304–10. doi:10.1001/jama.2011.743.

    Article  CAS  PubMed  Google Scholar 

  45. Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology. 2014;147:502–26. doi:10.1053/j.gastro.2014.04.001.

    Article  PubMed  Google Scholar 

  46. ten Broeke SW, Brohet RM, Tops CM, et al. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk. J Clin Oncol. 2015;33:319–25. doi:10.1200/JCO.2014.57.8088.

    Article  PubMed  Google Scholar 

  47. Vasen HFA, Mecklin J-P, Meera Khan P, et al. The International Collaborative Group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34:424–5.

    Article  CAS  PubMed  Google Scholar 

  48. Vasen HF, Watson P, Mecklin JP, et al. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116:1453–6.

    Article  CAS  PubMed  Google Scholar 

  49. Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the U.S. Multi-Society Task Force on Colorectal Cancer. Gastrointest Endosc. 2014;80:197–220. doi:10.1016/j.gie.2014.06.006.

    Article  PubMed  Google Scholar 

  50. Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on Colorectal Cancer. Dis Colon Rectum. 2014;57:1025–48.

    Article  PubMed  Google Scholar 

  51. Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer. Am J Gastroenterol. 2014;109:1159–79. doi:10.1038/ajg.2014.186.

    Article  PubMed  Google Scholar 

  52. Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96:261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507. doi:10.1146/annurev-pathol-011110-130235.

    Article  CAS  PubMed  Google Scholar 

  54. Bird AP. CpG-rich islands and the function of DNA methylation. Nature (London). 1986;321:209–13.

    Article  CAS  Google Scholar 

  55. Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4:988–93.

    Article  CAS  PubMed  Google Scholar 

  56. Lee S, Cho NY, Choi M, et al. Clinicopathological features of CpG island methylator phenotype-positive colorectal cancer and its adverse prognosis in relation to KRAS/BRAF mutation. Pathol Int. 2008;58:104–13. doi:10.1111/j.1440-1827.2007.02197.x.

    Article  CAS  PubMed  Google Scholar 

  57. Yamamoto E, Suzuki H, Yamano HO, et al. Molecular dissection of premalignant colorectal lesions reveals early onset of the CpG island methylator phenotype. Am J Pathol. 2012;181:1847–61. doi:10.1016/j.ajpath.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  58. Chirieac LR, Shen L, Catalano PJ, et al. Phenotype of microsatellite-stable colorectal carcinomas with CpG island methylation. Am J Surg Pathol. 2005;29:429–36.

    Article  PubMed  Google Scholar 

  59. Juo YY, Johnston FM, Zhang DY, et al. Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis. Ann Oncol. 2014;25:2314–27. doi:10.1093/annonc/mdu149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kriegl L, Neumann J, Vieth M. Up and downregulation of p16(Ink4a) expression in BRAF-mutated polyps/adenomas indicates a senescence barrier in the serrated route to colon cancer. Mod Pathol. 2011;24:1015–22. doi:10.1038/modpathol.2011.43.

    Article  CAS  PubMed  Google Scholar 

  61. Wajapeyee N, Serra RW, Zhu X, et al. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132:363–74. doi:10.1016/j.cell.2007.12.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guarinos C, Sánchez-Fortún C, Rodríguez-Soler M, et al. Serrated polyposis syndrome: molecular, pathological and clinical aspects. World J Gastroenterol. 2012;18:2452–61. doi:10.3748/wjg.v18.i20.2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rex DK, Ahnen DJ, Baron JA, et al. Serrated lesions of the colorectum: review and recommendations from an expert panel. Am J Gastroenterol. 2012;107:1315–29. doi:10.1038/ajg.2012.161.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fernando WC, Miranda MS, Worthley DL, et al. The CIMP phenotype in BRAF mutant serrated polyps from a prospective colonoscopy patient cohort. Gastroenterol Res Pract. 2014;2014:374926. doi:10.1155/2014/374926.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guarinos C, Sánchez-Fortún C, Rodríguez-Soler M, et al. Clinical subtypes and molecular characteristics of serrated polyposis syndrome. Clin Gastroenterol Hepatol. 2013;11:705–11. doi:10.1016/j.cgh.2012.12.045.

    Article  CAS  PubMed  Google Scholar 

  66. Gala MK, Mizukami Y, Le LP, et al. Germline mutations in oncogene-induced senescence pathways are associated with multiple sessile serrated adenomas. Gastroenterology. 2014;146:520–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bettington ML, Chetty R. Traditional serrated adenoma: an update. Hum Pathol. 2015;46:933–8. doi:10.1016/j.humpath.2015.04.002.

    Article  PubMed  Google Scholar 

  68. Bettington ML, Walker NI, Rosty C, et al. A clinicopathological and molecular analysis of 200 traditional serrated adenomas. Mod Pathol. 2015;28:414–27. doi:10.1038/modpathol.2014.122.

    Article  PubMed  Google Scholar 

  69. Bettington M, Walker N, Rosty C, et al. Clinicopathological and molecular features of sessile serrated adenomas with dysplasia or carcinoma. Gut. 2017;66(1):97–106. doi:10.1136/gutjnl-2015-310456.

    Article  PubMed  Google Scholar 

  70. Al-Tassan N, Chmiel NH, Maynard J, et al. Inherited variants of MYH associated with somatic G:C → T:A mutations in colorectal tumors. Nat Genet. 2002;30:227–32.

    Article  CAS  PubMed  Google Scholar 

  71. Boparai KS, Dekker E, Van Eeden S, et al. Hyperplastic polyps and sessile serrated adenomas as a phenotypic expression of MYH-associated polyposis. Gastroenterology. 2008;135:2014–8. doi:10.1053/j.gastro.2008.09.020.

    Article  CAS  PubMed  Google Scholar 

  72. Calva D, Howe JR. Hamartomatous polyposis syndromes. Surg Clin North Am. 2008;88:779–817. doi:10.1016/j.suc.2008.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jenne DE, Reimann H, Nezu J-I, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998;18:38.

    Article  CAS  PubMed  Google Scholar 

  74. McGarrity TJ, Amos C. Peutz-Jeghers syndrome: clinicopathology and molecular alterations. Cell Mol Life Sci. 2006;63:2135–44.

    Article  CAS  PubMed  Google Scholar 

  75. Howe JR, Sayed MG, Ahmed AF, et al. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet. 2004;41:484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Giardiello FM, Hamilton SR, Kern SE, et al. Colorectal neoplasia in juvenile polyposis or juvenile polyps. Arch Dis Child. 1991;66:971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Howe JR, Mitros FA, Summers RW. The risk of gastrointestinal carcinoma in familial juvenile polyposis. Ann Surg Oncol. 1998;5:751.

    Article  CAS  PubMed  Google Scholar 

  78. Briggs S, Tomlinson I. Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers. J Pathol. 2013;230:148–53. doi:10.1002/path.4185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6. doi:10.1038/nm.3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cord Langner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brčić, I., Callé, C., Langner, C. (2017). Molecular and Cellular Mechanisms of Carcinogenesis in the Large Bowel. In: Haybaeck, J. (eds) Mechanisms of Molecular Carcinogenesis – Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-53661-3_4

Download citation

Publish with us

Policies and ethics