Skip to main content

Potential and Challenges of Liquid Biopsies

  • Chapter
  • First Online:
Mechanisms of Molecular Carcinogenesis – Volume 2

Abstract

Although tumor genotyping is still the most currently used method for categorizing tumors for clinical decisions, tumor tissues provide only a snapshot or are often difficult to obtain. To overcome these issues, methods are needed for a rapid, cost-effective, and noninvasive identification of biomarkers at various time points during the course of disease. The analysis of circulating tumor cells (CTCs), cell-free circulating tumor DNA (ctDNA), circulating RNAs, and exosomes, frequently referred to as liquid biopsy, has recently gained enormous momentum. Due to technological advances, novel circulating tumor biomarkers were shown to have a great potential to improve patient treatment in terms of estimation of prognosis, monitoring treatment response, early detection of resistance mechanisms, identification of actionable targets, and detection of minimal residual disease. However, despite all efforts, liquid biopsies are not yet routinely used mainly due to technological hurdles, lack of analytical and pre-analytical standards and conclusive evidence that patients indeed benefit from such analyses. In this chapter, the different entities with respect to state-of-the-art technologies, potential clinical applications, and their limitations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lugo TG, Braun S, Cote RJ, Pantel K, Rusch V. Detection and measurement of occult disease for the prognosis of solid tumors. J Clin Oncol. 2003;21:2609–15. doi:10.1200/JCO.2003.01.153.

    Article  PubMed  Google Scholar 

  2. Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529:298–306. doi:10.1038/nature17038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Aceto N, Toner M, Maheswaran S, Haber DA. En route to metastasis: circulating tumor cell clusters and epithelial-to-mesenchymal transition. Trends Cancer. 2015;1:44–52. doi:10.1016/j.trecan.2015.07.006.

    Article  Google Scholar 

  4. Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, Jain RK. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A. 2010;107:21677–82. doi:10.1073/pnas.1016234107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20:576–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barrière G, Riouallon A, Renaudie J, Tartary M, Rigaud M. Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer. 2012;12:114. doi:10.1186/1471-2407-12-114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37. doi:10.1038/nm.3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao Z, Ding B-S, Guo P, Lee SB, Butler JM, Casey SC, Simons M, Tam W, Felsher DW, Shido K, Rafii A, Scandura JM, Rafii S. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell. 2014;25:350–65. doi:10.1016/j.ccr.2014.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsai JH, Yang J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192–206. doi:10.1101/gad.225334.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96. doi:10.1038/nrm3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-Mesenchymal Transitions in Development and Disease. Cell. 2009;139:871–90. doi:10.1016/j.cell.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  12. Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 2007;253:180–204. doi:10.1016/j.canlet.2006.12.014.

    Article  CAS  PubMed  Google Scholar 

  13. Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14:623–31. doi:10.1038/nrc3820.

    Article  PubMed  CAS  Google Scholar 

  14. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 2004;10:6897–904. doi:10.1158/1078-0432.CCR-04-0378.

    Article  PubMed  Google Scholar 

  15. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, Lotan TL, Zheng Q, De Marzo AM, Isaacs JT, Isaacs WB, Nadal R, Paller CJ, Denmeade SR, Carducci MA, Eisenberger MA, Luo J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38. doi:10.1056/NEJMoa1315815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–9. doi:10.1038/nature06385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, Floyd Jr FP, Gilman AJ, Lord JB, Winokur D, Springer S, Irimia D, Nagrath S, Sequist LV, Lee RJ, Isselbacher KJ, Maheswaran S, Haber DA, Toner M. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A. 2010;107:18392–7. doi:10.1073/pnas.1012539107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoon HJ, Kim TH, Zhang Z, Azizi E, Pham TM, Paoletti C, Lin J, Ramnath N, Wicha MS, Hayes DF, Simeone DM, Nagrath S. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol. 2013;8:735–41. doi:10.1038/nnano.2013.194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, Wittner BS, Stojanov P, Brachtel E, Sgroi D, Kapur R, Shioda T, Ting DT, Ramaswamy S, Getz G, Iafrate AJ, Benes C, Toner M, Maheswaran S, Haber DA. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345:216–20. doi:10.1126/science.1253533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saucedo-Zeni N, Mewes S, Niestroj R, Gasiorowski L, Murawa D, Nowaczyk P, Tomasi T, Weber E, Dworacki G, Morgenthaler NG, Jansen H, Propping C, Sterzynska K, Dyszkiewicz W, Zabel M, Kiechle M, Reuning U, Schmitt M, Lucke K. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int J Oncol. 2012;41:1241–50. doi:10.3892/ijo.2012.1557.

    PubMed  PubMed Central  Google Scholar 

  21. Alix-Panabieres C. EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Recent Results Cancer Res. 2012;195:69–76. doi:10.1007/978-3-642-28160-0_6.

    Article  PubMed  Google Scholar 

  22. Gertler R, Rosenberg R, Fuehrer K, Dahm M, Nekarda H, Siewert JR. Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Recent Results Cancer Res. 2003;162:149–55.

    Article  PubMed  Google Scholar 

  23. He W, Kularatne SA, Kalli KR, Prendergast FG, Amato RJ, Klee GG, Hartmann LC, Low PS. Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands. Int J Cancer. 2008;123:1968–73. doi:10.1002/ijc.23717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El-Heliebi A, Kroneis T, Zohrer E, Haybaeck J, Fischereder K, Kampel-Kettner K, Zigeuner R, Pock H, Riedl R, Stauber R, Geigl JB, Huppertz B, Sedlmayr P, Lackner C. Are morphological criteria sufficient for the identification of circulating tumor cells in renal cancer? J Transl Med. 2013;11:214. doi:10.1186/1479–5876–11-214.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F, Dive C. Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol. 2011;178:989–96. doi:10.1016/j.ajpath.2010.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Brechot C, Paterlini-Brechot P. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol. 2000;156:57–63. doi:10.1016/S0002-9440(10)64706-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, Herold CI, Marcom PK, George DJ, Garcia-Blanco MA. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007. doi:10.1158/1541-7786.MCR-10-0490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cohen SJ, Punt CJA, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse MA, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LWMM, Meropol NJ. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann Oncol. 2009;20:1223–9. doi:10.1093/annonc/mdn786.

    Article  CAS  PubMed  Google Scholar 

  29. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ, Raghavan D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14:6302–9. doi:10.1158/1078-0432.CCR-08-0872.

    Article  PubMed  CAS  Google Scholar 

  30. Krebs MG, Sloane R, Priest L, Lancashire L, Hou J-M, Greystoke A, Ward TH, Ferraldeschi R, Hughes A, Clack G, Ranson M, Dive C, Blackhall FH. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol. 2011;29:1556–63. doi:10.1200/JCO.2010.28.7045.

    Article  PubMed  Google Scholar 

  31. Zhang L, Riethdorf S, Wu G, Wang T, Yang K, Peng G, Liu J, Pantel K. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res. 2012;18:5701–10. doi:10.1158/1078-0432.CCR-12-1587.

    Article  PubMed  Google Scholar 

  32. Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, Martel JM, Kojic N, Smith K, Chen P, Yang J, Hwang H, Morgan B, Trautwein J, Barber TA, Stott SL, Maheswaran S, Kapur R, Haber DA, Toner M. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc. 2014;9:694–710. doi:10.1038/nprot.2014.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, Yu M, Chen P, Morgan B, Trautwein J, Kimura A, Sengupta S, Stott SL, Karabacak NM, Barber TA, Walsh JR, Smith K, Spuhler PS, Sullivan JP, Lee RJ, Ting DT, Luo X, Shaw AT, Bardia A, Sequist LV, Louis DN, Maheswaran S, Kapur R, Haber DA, Toner M. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med. 2013;5:179ra47. doi:10.1126/scitranslmed.3005616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lalmahomed ZS, Kraan J, Gratama JW, Mostert B, Sleijfer S, Verhoef C. Circulating tumor cells and sample size: the more, the better. J Clin Oncol. 2010;28:e288–e289; author reply e290. doi:10.1200/JCO.2010.28.2764.

  35. Fortune JB, Feustel P. Effect of patient position on size and location of the subclavian vein for percutaneous puncture. Arch Surg. 2003;1960(138):996–1000; discussion 1001. doi:10.1001/archsurg.138.9.996.

  36. Gorges TM, Penkalla N, Schalk T, Joosse SA, Riethdorf S, Tucholski J, Lücke K, Wikman H, Jackson S, Brychta N, von Ahsen O, Schumann C, Krahn T, Pantel K. Enumeration and molecular characterization of tumor cells in lung cancer patients using a novel in vivo device for capturing circulating tumor cells. Clin Cancer Res. 2015; doi:10.1158/1078-0432.CCR-15-1416.

    PubMed  Google Scholar 

  37. Liu Z, Fusi A, Klopocki E, Schmittel A, Tinhofer I, Nonnenmacher A, Keilholz U. Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J Transl Med. 2011;9:70. doi:10.1186/1479–5876–9-70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alix-Panabières C, Vendrell J-P, Pellé O, Rebillard X, Riethdorf S, Müller V, Fabbro M, Pantel K. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin Chem. 2007;53:537–9. doi:10.1373/clinchem.2006.079509.

    Article  PubMed  CAS  Google Scholar 

  39. El-Heliebi A, Chen S, Kroneis T. Heat-induced fragmentation and adapter-assisted whole genome amplification using GenomePlex® single-cell whole genome amplification kit (WGA4). Methods Mol Biol. 2015a;1347:101–9. doi:10.1007/978-1-4939-2990-0_7.

    Article  CAS  PubMed  Google Scholar 

  40. El-Heliebi A, Chen S, Kroneis T. Using multiplex PCR for assessing the quality of whole genome amplified DNA. Methods Mol Biol. 2015b;1347:119–28. doi:10.1007/978-1-4939-2990-0_9.

    Article  CAS  PubMed  Google Scholar 

  41. Ma YC, Wang L, Yu FL. Recent advances and prospects in the isolation by size of epithelial tumor cells (ISET) methodology. Technol Cancer Res Treat. 2013;12:295–309. doi:10.7785/tcrt.2012.500328.

    PubMed  Google Scholar 

  42. Chudziak J, Burt DJ, Mohan S, Rothwell DG, Mesquita B, Antonello J, Dalby S, Ayub M, Priest L, Carter L, Krebs MG, Blackhall F, Dive C, Brady G. Clinical evaluation of a novel microfluidic device for epitope-independent enrichment of circulating tumour cells in patients with small cell lung cancer. Analyst. 2016;141:669–78. doi:10.1039/c5an02156a.

    Article  CAS  PubMed  Google Scholar 

  43. Hvichia GE, Parveen Z, Wagner C, Janning M, Quidde J, Stein A, Müller V, Loges S, Neves RPL, Stoecklein NH, Wikman H, Riethdorf S, Pantel K, Gorges TM. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer. 2016;138:2894–904. doi:10.1002/ijc.30007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM, Lax S, Waldispuehl-Geigl J, Mauermann O, Lackner C, Höfler G, Eisner F, Sill H, Samonigg H, Pantel K, Riethdorf S, Bauernhofer T, Geigl JB, Speicher MR. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 2013;73:2965–75. doi:10.1158/0008-5472.CAN-12-4140.

    Article  CAS  PubMed  Google Scholar 

  45. Pierga J-Y, Hajage D, Bachelot T, Delaloge S, Brain E, Campone M, Diéras V, Rolland E, Mignot L, Mathiot C, Bidard F-C. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann Oncol. 2012;23:618–24. doi:10.1093/annonc/mdr263.

    Article  PubMed  Google Scholar 

  46. Scher HI, Jia X, de Bono JS, Fleisher M, Pienta KJ, Raghavan D, Heller G. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009;10:233–9. doi:10.1016/S1470-2045(08)70340-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tewes M, Aktas B, Welt A, Mueller S, Hauch S, Kimmig R, Kasimir-Bauer S. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res Treat. 2009;115:581–90. doi:10.1007/s10549-008-0143-x.

    Article  PubMed  Google Scholar 

  48. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91. doi:10.1056/NEJMoa040766.

    Article  CAS  PubMed  Google Scholar 

  49. Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B, Srkalovic G, Tejwani S, Schott AF, O’Rourke MA, Lew DL, Doyle GV, Gralow JR, Livingston RB, Hayes DF. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol. 2014;32:3483–9. doi:10.1200/JCO.2014.56.2561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, Nadal R, Paller CJ, Denmeade SR, Carducci MA, Eisenberger MA, Luo J. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 2015;1:582–91. doi:10.1001/jamaoncol.2015.1341.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. C R Séances Soc Biol Fil. 1948;142:241–3.

    CAS  PubMed  Google Scholar 

  52. Leon SA, Ehrlich GE, Shapiro B, Labbate VA. Free DNA in the serum of rheumatoid arthritis patients. J Rheumatol. 1977a;4:139–43.

    CAS  PubMed  Google Scholar 

  53. Leon SA, Green A, Ehrlich GE, Poland M, Shapiro B. Avidity of antibodies in SLE: relation to severity of renal involvement. Arthritis Rheum. 1977b;20:23–9.

    Article  CAS  PubMed  Google Scholar 

  54. Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 1989;46:318–22.

    Article  CAS  PubMed  Google Scholar 

  55. Castells A, Puig P, Móra J, Boadas J, Boix L, Urgell E, Solé M, Capellà G, Lluís F, Fernández-Cruz L, Navarro S, Farré A. K-ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: diagnostic utility and prognostic significance. J Clin Oncol. 1999;17:578–84.

    Article  CAS  PubMed  Google Scholar 

  56. Chen X, Bonnefoi H, Diebold-Berger S, Lyautey J, Lederrey C, Faltin-Traub E, Stroun M, Anker P. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res. 1999;5:2297–303.

    CAS  PubMed  Google Scholar 

  57. Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao SL. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev. 1994;3:67–71.

    CAS  PubMed  Google Scholar 

  58. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol. 1994;86:774–9.

    Article  CAS  PubMed  Google Scholar 

  59. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359:235–7. doi:10.1038/359235a0.

    Article  CAS  PubMed  Google Scholar 

  60. Shaw JA, Smith BM, Walsh T, Johnson S, Primrose L, Slade MJ, Walker RA, Coombes RC. Microsatellite alterations plasma DNA of primary breast cancer patients. Clin Cancer Res. 2000;6:1119–24.

    CAS  PubMed  Google Scholar 

  61. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 1999;59:67–70.

    CAS  PubMed  Google Scholar 

  62. Heitzer E, Auer M, Hoffmann EM, Pichler M, Gasch C, Ulz P, Lax S, Waldispuehl-Geigl J, Mauermann O, Mohan S, Pristauz G, Lackner C, Hofler G, Eisner F, Petru E, Sill H, Samonigg H, Pantel K, Riethdorf S, Bauernhofer T, Geigl JB, Speicher MR. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer. 2013a;133:346–56. doi:10.1002/ijc.28030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mouliere F, Robert B, Arnau Peyrotte E, Del Rio M, Ychou M, Molina F, Gongora C, Thierry AR. High fragmentation characterizes tumour-derived circulating DNA. PLoS One. 2011;6:e23418. doi:10.1371/journal.pone.0023418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thierry AR, Mouliere F, Gongora C, Ollier J, Robert B, Ychou M, Del Rio M, Molina F. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 2010;38:6159–75. doi:10.1093/nar/gkq421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen C, Cram DS, Xie F, Wang P, Xu X, Li H, Song Z, Chen D, Zhang J, Tang S. A pregnancy with discordant fetal and placental chromosome 18 aneuploidies revealed by invasive and noninvasive prenatal diagnosis. Reprod Biomed Online. 2014;29:136–9. doi:10.1016/j.rbmo.2014.03.017.

    Article  CAS  PubMed  Google Scholar 

  66. Masuzaki H, Miura K, Yoshiura K, Yoshimura S, Niikawa N, Ishimaru T. Detection of cell free placental DNA in maternal plasma: direct evidence from three cases of confined placental mosaicism. J Med Genet. 2004;41:289–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lo YM, Tein MS, Pang CC, Yeung CK, Tong KL, Hjelm NM. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet. 1998;351:1329–30.

    Article  CAS  PubMed  Google Scholar 

  68. Snyder TM, Khush KK, Valantine HA, Quake SR. Universal noninvasive detection of solid organ transplant rejection. Proc Natl Acad Sci U S A. 2011;108:6229–34. doi:10.1073/pnas.1013924108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun K, Jiang P, Chan KCA, Wong J, Cheng YKY, Liang RHS, Chan W, Ma ESK, Chan SL, Cheng SH, Chan RWY, Tong YK, Ng SSM, Wong RSM, Hui DSC, Leung TN, Leung TY, Lai PBS, Chiu RWK, Lo YMD. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A. 2015;112:E5503–12. doi:10.1073/pnas.1508736112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68. doi:10.1016/j.cell.2015.11.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong S-M, Jiao Y, Juhl HH, Kim JJ, Siravegna G, Laheru DA, Lauricella C, Lim M, Lipson EJ, Marie SKN, Netto GJ, Oliner KS, Olivi A, Olsson L, Riggins GJ, Sartore-Bianchi A, Schmidt K, Shih l-M, Oba-Shinjo SM, Siena S, Theodorescu D, Tie J, Harkins TT, Veronese S, Wang T-L, Weingart JD, Wolfgang CL, Wood LD, Xing D, Hruban RH, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kinzler KW, Vogelstein B, Papadopoulos N, Diaz LA. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24. doi:10.1126/scitranslmed.3007094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, O’Shaughnessy J, Kinzler KW, Parmigiani G, Vogelstein B, Diaz LA, Velculescu VE. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4:162ra154. doi:10.1126/scitranslmed.3004742.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E, Rolet F, Gillet B, Gongora C, Dechelotte P, Robert B, Del Rio M, Lamy P-J, Bibeau F, Nouaille M, Loriot V, Jarrousse A-S, Molina F, Mathonnet M, Pezet D, Ychou M. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med. 2014;20:430–5. doi:10.1038/nm.3511.

    Article  CAS  PubMed  Google Scholar 

  74. Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64:218–24. doi:10.1086/302205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu SCY, Lee SWY, Jiang P, Leung TY, Chan KCA, Chiu RWK, Lo YMD. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing. Clin Chem. 2013;59:1228–37. doi:10.1373/clinchem.2013.203679.

    Article  CAS  PubMed  Google Scholar 

  76. Lee TH, Montalvo L, Chrebtow V, Busch MP. Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion. 2001;41:276–82.

    Article  CAS  PubMed  Google Scholar 

  77. Jung M, Klotzek S, Lewandowski M, Fleischhacker M, Jung K. Changes in concentration of DNA in serum and plasma during storage of blood samples. Clin Chem. 2003;49:1028–9.

    Article  CAS  PubMed  Google Scholar 

  78. Wong D, Moturi S, Angkachatchai V, Mueller R, DeSantis G, van den Boom D, Ehrich M. Optimizing blood collection, transport and storage conditions for cell free DNA increases access to prenatal testing. Clin Biochem. 2013;46:1099–104. doi:10.1016/j.clinbiochem.2013.04.023.

    Article  CAS  PubMed  Google Scholar 

  79. Breitbach S, Tug S, Helmig S, Zahn D, Kubiak T, Michal M, Gori T, Ehlert T, Beiter T, Simon P. Direct quantification of cell-free, circulating DNA from unpurified plasma. PLoS One. 2014;9:e87838. doi:10.1371/journal.pone.0087838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Manokhina I, Singh TK, Peñaherrera MS, Robinson WP. Quantification of cell-free DNA in normal and complicated pregnancies: overcoming biological and technical issues. PLoS One. 2014;9:e101500. doi:10.1371/journal.pone.0101500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hidestrand M, Stokowski R, Song K, Oliphant A, Deavers J, Goetsch M, Simpson P, Kuhlman R, Ames M, Mitchell M, Tomita-Mitchell A. Influence of temperature during transportation on cell-free DNA analysis. Fetal Diagn Ther. 2012;31:122–8. doi:10.1159/000335020.

    Article  PubMed  Google Scholar 

  82. Repiská G, Sedláčková T, Szemes T, Celec P, Minárik G. Selection of the optimal manual method of cell free fetal DNA isolation from maternal plasma. Clin Chem Lab Med. 2013;51:1185–9. doi:10.1515/cclm-2012-0418.

    Article  PubMed  CAS  Google Scholar 

  83. Hromadnikova I, Zejskova L, Kotlabova K, Jancuskova T, Doucha J, Dlouha K, Krofta L, Jirasek JE, Vlk R. Quantification of extracellular DNA using hypermethylated RASSF1A, SRY, and GLO sequences—evaluation of diagnostic possibilities for predicting placental insufficiency. DNA Cell Biol. 2010;29:295–301. doi:10.1089/dna.2009.0971.

    Article  CAS  PubMed  Google Scholar 

  84. Spindler K-LG, Pallisgaard N, Vogelius I, Jakobsen A. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin Cancer Res. 2012;18:1177–85. doi:10.1158/1078-0432.CCR-11-0564.

    Article  CAS  PubMed  Google Scholar 

  85. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LA, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A. 2005;102:16368–73. doi:10.1073/pnas.0507904102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, Bouché O, Landi B, Hutchison JB, Laurent-Puig P. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem. 2013;59:1722–31. doi:10.1373/clinchem.2013.206359.

    Article  CAS  PubMed  Google Scholar 

  87. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, Kinzler KW, Vogelstein B, Diaz LA. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90. doi:10.1038/nm.1789.

    Article  CAS  PubMed  Google Scholar 

  88. Olsson E, Winter C, George A, Chen Y, Howlin J, Tang M-HE, Dahlgren M, Schulz R, Grabau D, van Westen D, Fernö M, Ingvar C, Rose C, Bendahl P-O, Rydén L, Borg Å, Gruvberger-Saal SK, Jernström H, Saal LH. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med. 2015;7:1034–47. doi:10.15252/emmm.201404913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heitzer E, Ulz P, Belic J, Gutschi S, Quehenberger F, Fischereder K, Benezeder T, Auer M, Pischler C, Mannweiler S, Pichler M, Eisner F, Haeusler M, Riethdorf S, Pantel K, Samonigg H, Hoefler G, Augustin H, Geigl JB, Speicher MR. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med. 2013c;5:30. doi:10.1186/gm434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Newman AM, Bratman SV, To, J, Wynne JF, Eclov NCW, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW, Alizadeh AA, Diehn M. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54. doi:10.1038/nm.3519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DWY, Kaper F, Dawson S-J, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra68. doi:10.1126/scitranslmed.3003726.

    Article  PubMed  CAS  Google Scholar 

  92. Chan KCA, Jiang P, Zheng YWL, Liao GJW, Sun H, Wong J, Siu SSN, Chan WC, Chan SL, Chan ATC, Lai PBS, Chiu RWK, Lo YMD. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem. 2013b;59:211–24. doi:10.1373/clinchem.2012.196014.

    Article  CAS  PubMed  Google Scholar 

  93. Chan KCA, Jiang P, Chan CWM, Sun K, Wong J, Hui EP, Chan SL, Chan WC, Hui DSC, Ng SSM, Chan HLY, Wong CSC, Ma BBY, Chan ATC, Lai PBS, Sun H, Chiu RWK, Lo YMD. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A. 2013a;110:18761–8. doi:10.1073/pnas.1313995110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Heitzer E, Auer M, Ulz P, Geigl JB, Speicher MR. Circulating tumor cells and DNA as liquid biopsies. Genome Med. 2013b;5:73. doi:10.1186/gm477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Heidary M, Auer M, Ulz P, Heitzer E, Petru E, Gasch C, Riethdorf S, Mauermann O, Lafer I, Pristauz G, Lax S, Pantel K, Geigl JB, Speicher MR. The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res. 2014;16:421. doi:10.1186/s13058-014-0421-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Belic J, Koch M, Ulz P, Auer M, Gerhalter T, Mohan S, Fischereder K, Petru E, Bauernhofer T, Geigl JB, Speicher MR, Heitzer E. Rapid identification of plasma DNA samples with increased ctDNA levels by a modified FAST-SeqS approach. Clin Chem. 2015;61:838–49. doi:10.1373/clinchem.2014.234286.

    Article  CAS  PubMed  Google Scholar 

  97. Frattini M, Gallino G, Signoroni S, Balestra D, Lusa L, Battaglia L, Sozzi G, Bertario L, Leo E, Pilotti S, Pierotti MA. Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett. 2008;263:170–81. doi:10.1016/j.canlet.2008.03.021.

    Article  CAS  PubMed  Google Scholar 

  98. Kim K, Shin DG, Park MK, Baik SH, Kim TH, Kim S, Lee S. Circulating cell-free DNA as a promising biomarker in patients with gastric cancer: diagnostic validity and significant reduction of cfDNA after surgical resection. Ann Surg Treat Res. 2014;86:136–42. doi:10.4174/astr.2014.86.3.136.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Neumann L, Freund KG, Sørenson KH. Long-term results of Charnley total hip replacement. Review of 92 patients at 15 to 20 years. J Bone Joint Surg Br. 1994;76:245–51.

    CAS  PubMed  Google Scholar 

  100. Sozzi G, Conte D, Mariani L, Lo Vullo S, Roz L, Lombardo C, Pierotti MA, Tavecchio L. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res. 2001;61:4675–8.

    CAS  PubMed  Google Scholar 

  101. Dawson S-J, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin S-F, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209. doi:10.1056/NEJMoa1213261.

    Article  CAS  PubMed  Google Scholar 

  102. Sorensen BS, Wu L, Wei W, Tsai J, Weber B, Nexo E, Meldgaard P. Monitoring of epidermal growth factor receptor tyrosine kinase inhibitor-sensitizing and resistance mutations in the plasma DNA of patients with advanced non-small cell lung cancer during treatment with erlotinib: monitoring EGFR mutations in plasma DNA. Cancer. 2014;120:3896–901. doi:10.1002/cncr.28964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiang T, Ren S, Zhou C. Role of circulating-tumor DNA analysis in non-small cell lung cancer. Lung Cancer. 2015;90:128–34. doi:10.1016/j.lungcan.2015.09.013.

    Article  PubMed  Google Scholar 

  104. Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O’Connell A, Messineo MM, Luke JJ, Butaney M, Kirschmeier P, Jackman DM, Jänne PA. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20:1698–705. doi:10.1158/1078-0432.CCR-13-2482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Qiu M, Wang J, Xu Y, Ding X, Li M, Jiang F, Xu L, Yin R. Circulating tumor DNA is effective for the detection of EGFR mutation in non-small cell lung cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2015;24:206–12. doi:10.1158/1055-9965.EPI-14-0895.

    Article  CAS  PubMed  Google Scholar 

  106. Shaib W, Mahajan R, El-Rayes B. Markers of resistance to anti-EGFR therapy in colorectal cancer. J Gastrointest Oncol. 2013;4:308–18. doi:10.3978/j.issn.2078-6891.2013.029.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–40. doi:10.1038/nature11219.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, Anderson SA, McConeghy B, Shukin R, Bazov J, Youngren J, Paris P, Thomas G, Small EJ, Wang Y, Gleave ME, Collins CC, Chi KN. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res. 2015;21:2315–24. doi:10.1158/1078-0432.CCR-14-2666.

    Article  CAS  PubMed  Google Scholar 

  109. Mohan S, Heitzer E, Ulz P, Lafer I, Lax S, Auer M, Pichler M, Gerger A, Eisner F, Hoefler G, Bauernhofer T, Geigl JB, Speicher MR. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet. 2014;10:e1004271. doi:10.1371/journal.pgen.1004271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Heitzer E, Ulz P, Geigl JB, Speicher MR. Non-invasive detection of genome-wide somatic copy number alterations by liquid biopsies. Mol Oncol. 2016;10:494–502. doi:10.1016/j.molonc.2015.12.004.

    Article  CAS  PubMed  Google Scholar 

  111. Tie J, Kinde I, Wang Y, Wong HL, Roebert J, Christie M, Tacey M, Wong R, Singh M, Karapetis CS, Desai J, Tran B, Strausberg RL, Diaz LA, Papadopoulos N, Kinzler KW, Vogelstein B, Gibbs P. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26:1715–22. doi:10.1093/annonc/mdv177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108:9530–5. doi:10.1073/pnas.1105422108.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Murtaza M, Dawson S-J, Tsui DWY, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin S-F, Kingsbury Z, Wong ASC, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497:108–12. doi:10.1038/nature12065.

    Article  CAS  PubMed  Google Scholar 

  114. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci. 2011;108:5003–8. doi:10.1073/pnas.1019055108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13:17–24. doi:10.1016/j.gpb.2015.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Tsui NBY, Ng EKO, Lo YMD. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 2002;48:1647–53.

    CAS  PubMed  Google Scholar 

  117. Kodahl AR, Lyng MB, Binder H, Cold S, Gravgaard K, Knoop AS, Ditzel HJ. Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol. 2014;8:874–83. doi:10.1016/j.molonc.2014.03.002.

    Article  CAS  PubMed  Google Scholar 

  118. Ng EKO, Tsui NBY, Lam NYL, Chiu RWK, Yu SCH, Wong SCC, Lo ESF, Rainer TH, Johnson PJ, Lo YMD. Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin Chem. 2002;48:1212–7.

    CAS  PubMed  Google Scholar 

  119. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10:619–24. doi:10.1038/ncb1725.

    Article  CAS  PubMed  Google Scholar 

  120. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 2008;15:80–8. doi:10.1038/sj.cdd.4402237.

    Article  CAS  PubMed  Google Scholar 

  121. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–92. doi:10.1111/j.1349-7006.2010.01650.x.

    Article  CAS  PubMed  Google Scholar 

  122. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6. doi:10.1038/ncb1800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21. doi:10.1016/j.ygyno.2008.04.033.

    Article  CAS  PubMed  Google Scholar 

  124. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70:9621–30. doi:10.1158/0008-5472.CAN-10-1722.

    Article  CAS  PubMed  Google Scholar 

  125. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, Hearn S, Elemento O, Paknejad N, Manova-Todorova K, Welte K, Bromberg J, Peinado H, Lyden D. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9. doi:10.1038/cr.2014.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–33. doi:10.1038/ncb2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105:10513–8. doi:10.1073/pnas.0804549105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Moldovan L, Batte K, Wang Y, Wisler J, Piper M. Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR. In: Kosaka N, editor. Circulating microRNAs, Springer protocols. New York: Humana Press; 2013. p. 129–45.

    Chapter  Google Scholar 

  129. Wang K, Yuan Y, Cho J-H, McClarty S, Baxter D, Galas DJ, Ahuja SK. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7:e41561. doi:10.1371/journal.pone.0041561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma. J Mol Diagn. 2013;15:827–34. doi:10.1016/j.jmoldx.2013.07.005.

    Article  CAS  PubMed  Google Scholar 

  131. Grasedieck S, Schöler N, Bommer M, Niess JH, Tumani H, Rouhi A, Bloehdorn J, Liebisch P, Mertens D, Döhner H, Buske C, Langer C, Kuchenbauer F. Impact of serum storage conditions on microRNA stability. Leukemia. 2012;26:2414–6. doi:10.1038/leu.2012.106.

    Article  CAS  PubMed  Google Scholar 

  132. Mraz M, Malinova K, Mayer J, Pospisilova S. MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun. 2009;390:1–4. doi:10.1016/j.bbrc.2009.09.061.

    Article  CAS  PubMed  Google Scholar 

  133. Bravo V, Rosero S, Ricordi C, Pastori RL. Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem Biophys Res Commun. 2007;353:1052–5. doi:10.1016/j.bbrc.2006.12.135.

    Article  CAS  PubMed  Google Scholar 

  134. Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med. 2014;18:371–90. doi:10.1111/jcmm.12236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ma W, Wang M, Wang Z-Q, Sun L, Graber D, Matthews J, Champlin R, Yi Q, Orlowski RZ, Kwak LW, Weber DM, Thomas SK, Shah J, Kornblau S, Davis RE. Effect of long-term storage in TRIzol on microarray-based gene expression profiling. Cancer Epidemiol Biomarkers Prev. 2010;19:2445–52. doi:10.1158/1055-9965.EPI-10-0565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kim Y-K, Yeo J, Kim B, Ha M, Kim VN. Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell. 2012;46:893–5. doi:10.1016/j.molcel.2012.05.036.

    Article  CAS  PubMed  Google Scholar 

  137. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13:358–69. doi:10.1038/nrg3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hydbring P, Badalian-Very G. Clinical applications of microRNAs. F1000Research. 2013. doi:10.12688/f1000research.2–136.v3.

  139. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154–8. doi:10.1093/nar/gkm952.

    Article  CAS  PubMed  Google Scholar 

  140. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CSR, Harris AL. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5. doi:10.1111/j.1365-2141.2008.07077.x.

    Article  PubMed  Google Scholar 

  141. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61. doi:10.1073/pnas.0510565103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Boeri M, Verri C, Conte D, Roz L, Modena P, Facchinetti F, Calabro E, Croce CM, Pastorino U, Sozzi G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci. 2011;108:3713–8. doi:10.1073/pnas.1100048108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Keller A, Leidinger P, Bauer A, ElSharawy A, Haas J, Backes C, Wendschlag A, Giese N, Tjaden C, Ott K, Werner J, Hackert T, Ruprecht K, Huwer H, Huebers J, Jacobs G, Rosenstiel P, Dommisch H, Schaefer A, Müller-Quernheim J, Wullich B, Keck B, Graf N, Reichrath J, Vogel B, Nebel A, Jager SU, Staehler P, Amarantos I, Boisguerin V, Staehler C, Beier M, Scheffler M, Büchler MW, Wischhusen J, Haeusler SFM, Dietl J, Hofmann S, Lenhof H-P, Schreiber S, Katus HA, Rottbauer W, Meder B, Hoheisel JD, Franke A, Meese E. Toward the blood-borne miRNome of human diseases. Nat Methods. 2011;8:841–3. doi:10.1038/nmeth.1682.

    Article  CAS  PubMed  Google Scholar 

  144. Tiberio P, Callari M, Angeloni V, Daidone MG, Appierto V, Tiberio P, Callari M, Angeloni V, Daidone MG, Appierto V. Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int. 2015;2015:e731479. doi:10.1155/2015/731479.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin El-Heliebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

El-Heliebi, A., Heitzer, E., Kroneis, T., Chen, S., Haudum, C., Fuchs, J. (2017). Potential and Challenges of Liquid Biopsies. In: Haybaeck, J. (eds) Mechanisms of Molecular Carcinogenesis – Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-53661-3_12

Download citation

Publish with us

Policies and ethics