Skip to main content

Axl and Its Mediated Signaling Axis in Cancer

  • Chapter
  • First Online:
Mechanisms of Molecular Carcinogenesis – Volume 1
  • 749 Accesses

Abstract

AXL is a receptor tyrosine kinase activated by growth arrest-specific 6 (GAS6) or by ligand-independent homophilic and/or heterophilic interactions that regulate cancer cell proliferation, survival, migration, invasion, distant metastasis, the epithelial to mesenchymal transition (EMT), angiogenesis, and drug resistance. Axl belongs to the Tyro-3, AXL, and Mer (TAM) family of receptor molecules, known to be expressed in a number of organs and cell lines with a few exceptions such as lymphocytes and granulocytes. However, inappropriate Axl upregulation leads to uncontrolled cell growth, and its abundant expression is detected in a number of cancers such as colorectal and breast tumors. The transcriptional regulation of Axl is epigenetically inhibited by CpG hyper-methylation. Furthermore, the zinc finger transcriptional factor family members Sp1 and Sp3 are the constitutive regulators of Axl. Under oncogenic conditions, AP-1 family members mainly enhance its expression. Moreover, an overexpression of MZF1 induces Axl expression and mediates the migratory and invasive behavior of cells. Axl is also posttranscriptionally regulated by the small noncoding tumor suppressor microRNAs (miRNAs) miR-34 and miR-199. A malfunction of these different regulatory mechanisms in controlling Axl expression can induce Axl expression in cancer phenotypes. In addition to aspects of its regulation, this chapter will cover details of Axl structure, its expression in diverse cancer entities, and its signaling axis in the mediation of functions related to cancer phenotypes, including cell proliferation, antiapoptotic effects, EMT, cancer metastasis, angiogenesis, and drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janssen JW, et al. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene. 1991;6(11):2113–20.

    CAS  PubMed  Google Scholar 

  2. O’Bryan JP, et al. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991;11(10):5016–31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCloskey P, et al. GAS6 mediates adhesion of cells expressing the receptor tyrosine kinase Axl. J Biol Chem. 1997;272(37):23285–91.

    Article  CAS  PubMed  Google Scholar 

  4. Braunger J, et al. Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site. Oncogene. 1997;14(22):2619–31.

    Article  CAS  PubMed  Google Scholar 

  5. Varnum BC, et al. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature. 1995;373(6515):623–6.

    Article  CAS  PubMed  Google Scholar 

  6. Dahlbäck B, Villoutreix BO. Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol. 2005;25:1311–20.

    Article  PubMed  CAS  Google Scholar 

  7. Villoutreix BO, et al. SHBG region of the anticoagulant cofactor protein S: secondary structure prediction, circular dichroism spectroscopy, and analysis of naturally occurring mutations. Proteins. 1997;29(4):478–91.

    Article  CAS  PubMed  Google Scholar 

  8. Fisher PW, et al. A novel site contributing to growth-arrest-specific gene 6 binding to its receptors as revealed by a human monoclonal antibody. Biochem J. 2005;387(Pt 3):727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sasaki T, et al. Structural basis for Gas6-Axl signalling. EMBO J. 2006;25(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  10. Nagata K, et al. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J Biol Chem. 1996;271(47):30022–7.

    Article  CAS  PubMed  Google Scholar 

  11. Bellosta P, et al. The receptor tyrosine kinase ARK mediates cell aggregation by homophilic binding. Mol Cell Biol. 1995;15(2):614–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vajkoczy P, et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci U S A. 2006;103(15):5799–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heiring C, Dahlbäck B, Muller YA. Ligand recognition and homophilic interactions in Tyro3: structural insights into the Axl/Tyro3 receptor tyrosine kinase family. J Biol Chem. 2004;279(8):6952–8.

    Article  CAS  PubMed  Google Scholar 

  14. Toshima J, et al. Autophosphorylation activity and association with Src family kinase of Sky receptor tyrosine kinase. Biochem Biophys Res Commun. 1995;209(2):656–63.

    Article  CAS  PubMed  Google Scholar 

  15. Ruan G-X, Kazlauskas A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 2012;31(7):1692–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernandez-Botran R. Soluble cytokine receptors: basic immunology and clinical applications. Crit Rev Clin Lab Sci. 1999;36(3):165–224.

    Article  CAS  PubMed  Google Scholar 

  17. O’Bryan JP, et al. The transforming receptor tyrosine kinase, Axl, is post-translationally regulated by proteolytic cleavage. J Biol Chem. 1995;270:551–7.

    Article  PubMed  Google Scholar 

  18. Wimmel A, et al. Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur J Cancer. 2001;37(17):2264–74.

    Article  CAS  PubMed  Google Scholar 

  19. Budagian V, et al. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control. EMBO J. 2005;24(24):4260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Craven RJ, et al. Receptor tyrosine kinases expressed in metastatic colon cancer. Int J Cancer. 1995;60(6):791–7.

    Article  CAS  PubMed  Google Scholar 

  21. Martinelli E, et al. AXL is an oncotarget in human colorectal cancer. Oncotarget. 2015;6(27):23281–96.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mudduluru G, Vajkoczy P, Allgayer H. Myeloid zinc finger 1 induces migration, invasion, and in vivo metastasis through Axl gene expression in solid cancer. Mol Cancer Res. 2010;8(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  23. Wu CW, et al. Clinical significance of AXL kinase family in gastric cancer. Anticancer Res. 2002;22:1071–8.

    CAS  PubMed  Google Scholar 

  24. D’Alfonso TM, et al. Axl receptor tyrosine kinase expression in breast cancer. J Clin Pathol. 2014;67(8):690–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ishikawa M, et al. Higher expression of receptor tyrosine kinase Axl, and differential expression of its ligand, Gas6, predict poor survival in lung adenocarcinoma patients. Ann Surg Oncol. 2013;20:S467–76.

    Article  PubMed  Google Scholar 

  26. Avilla E, et al. Activation of TYRO3/AXL tyrosine kinase receptors in thyroid cancer. Cancer Res. 2011;71(5):1792–804.

    Article  CAS  PubMed  Google Scholar 

  27. Xu J, et al. Axl gene knockdown inhibits the metastasis properties of hepatocellular carcinoma via PI3K/Akt-PAK1 signal pathway. Tumour Biol. 2014;35(4):3809–17.

    Article  CAS  PubMed  Google Scholar 

  28. Paccez JD, et al. The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene. 2013;32(6):689–98.

    Article  CAS  PubMed  Google Scholar 

  29. Han J, et al. Gas6/Axl mediates tumor cell apoptosis, migration and invasion and predicts the clinical outcome of osteosarcoma patients. Biochem Biophys Res Commun. 2013;435(3):493–500.

    Article  CAS  PubMed  Google Scholar 

  30. Gustafsson A, et al. Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement and survival. Clin Cancer Res. 2009;15(14):4742–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hutterer M, et al. Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14(1):130–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ben-Batalla I, et al. Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma. Blood. 2013;122(14):2443–52.

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh AK, et al. The novel receptor tyrosine kinase Axl is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy. Blood. 2011;117(6):1928–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rea K, et al. Novel Axl-driven signaling pathway and molecular signature characterize high-grade ovarian cancer patients with poor clinical outcome. Oncotarget. 2015;6(13):30859–75.

    PubMed  PubMed Central  Google Scholar 

  35. Hector A, et al. The Axl receptor tyrosine kinase is an adverse prognostic factor and a therapeutic target in esophageal adenocarcinoma. Cancer Biol Ther. 2010;10(10):1009–18.

    Article  PubMed  CAS  Google Scholar 

  36. Mudduluru G, et al. Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene. 2011;30(25):2888–99.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, et al. AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res. 2008;68(6):1905–15.

    Article  CAS  PubMed  Google Scholar 

  38. Fridell YW, et al. Differential activation of the Ras/extracellular-signal-regulated protein kinase pathway is responsible for the biological consequences induced by the Axl receptor tyrosine kinase. Mol Cell Biol. 1996;16(1):135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bellosta P, et al. Signaling through the ARK tyrosine kinase receptor protects from apoptosis in the absence of growth stimulation. Oncogene. 1997;15:2387–97.

    Article  CAS  PubMed  Google Scholar 

  40. Goruppi S, Ruaro E, Schneider C. Gas6, the ligand of Axl tyrosine kinase receptor, has mitogenic and survival activities for serum starved NIH3T3 fibroblasts. Oncogene. 1996;12(3):471–80.

    CAS  PubMed  Google Scholar 

  41. Allen MP, et al. Growth arrest-specific gene 6 (Gas6)/adhesion related kinase (Ark) signaling promotes gonadotropin-releasing hormone neuronal survival via extracellular signal-regulated kinase (ERK) and Akt. Mol Endocrinol. 1999;13(2):191–201.

    Article  CAS  PubMed  Google Scholar 

  42. Goruppi S, et al. Requirement of phosphatidylinositol 3-kinase-dependent pathway and Src for Gas6-Axl mitogenic and survival activities in NIH 3T3 fibroblasts. Mol Cell Biol. 1997;17(8):4442–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Loeser RF, et al. Human chondrocyte expression of growth-arrest-specific gene 6 and the tyrosine kinase receptor axl. Potential role in autocrine signaling in cartilage. Arthritis Rheum. 1997;40(8):1455–65.

    Article  CAS  PubMed  Google Scholar 

  44. Healy AM, et al. Gas 6 promotes Axl-mediated survival in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2001;280(6):L1273–81.

    CAS  PubMed  Google Scholar 

  45. O’Donnell K, et al. Expression of receptor tyrosine kinase Axl and its ligand Gas6 in rheumatoid arthritis: evidence for a novel endothelial cell survival pathway. Am J Pathol. 1999;154(4):1171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sawabu T, et al. Growth arrest-specific gene 6 and Axl signaling enhances gastric cancer cell survival via Akt pathway. Mol Carcinog. 2007;46(2):155–64.

    Article  CAS  PubMed  Google Scholar 

  47. Chen C, Edelstein LC, Gélinas C. The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol. 2000;20(8):2687–95.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zong WX, et al. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev. 1999;13(4):382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Demarchi F, et al. Gas6 anti-apoptotic signaling requires NF-kappa B activation. J Biol Chem. 2001;276(34):31738–44.

    Article  CAS  PubMed  Google Scholar 

  50. Marchand B, et al. Inhibition of glycogen synthase kinase-3 activity triggers an apoptotic response in pancreatic cancer cells through JNK-dependent mechanisms. Carcinogenesis. 2012;33(3):529–37.

    Article  CAS  PubMed  Google Scholar 

  51. Hasanbasic I, et al. Intracellular signaling pathways involved in Gas6-Axl-mediated survival of endothelial cells. Am J Physiol Heart Circ Physiol. 2004;287(3):H1207–13.

    Article  CAS  PubMed  Google Scholar 

  52. Son B-K, et al. Gas6/Axl-PI3K/Akt pathway plays a central role in the effect of statins on inorganic phosphate-induced calcification of vascular smooth muscle cells. Eur J Pharmacol. 2007;556(1–3):1–8.

    Article  CAS  PubMed  Google Scholar 

  53. Linger RMA, et al. Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene. 2013;32(29):3420–31.

    Article  CAS  PubMed  Google Scholar 

  54. Hong J, Belkhiri A. AXL Mediates TRAIL Resistance in Esophageal Adenocarcinoma. Neoplasia. 2013;15(3):296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nature reviews. Cancer. 2003;3(6):401–10.

    CAS  PubMed  Google Scholar 

  56. Delfortrie S, et al. Egfl7 promotes tumor escape from immunity by repressing endothelial cell activation. Cancer Res. 2011;71(23):7176–86.

    Article  CAS  PubMed  Google Scholar 

  57. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(5):1011–27.

    Article  CAS  Google Scholar 

  58. Parker LH, et al. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004;428(6984):754–8.

    Article  CAS  PubMed  Google Scholar 

  59. Holland SJ, et al. Multiple roles for the receptor tyrosine kinase Axl in tumor formation. Cancer Res. 2005;65(20):9294–303.

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, et al. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene. 2009;28(39):3442–55.

    Article  CAS  PubMed  Google Scholar 

  61. Ruan G-X, Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J Biol Chem. 2013;288:21161–2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119(6):1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Koorstra JBM, et al. The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biol Ther. 2009;8(7):618–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gjerdrum C, et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci U S A. 2010;107(3):1124–9.

    Article  CAS  PubMed  Google Scholar 

  65. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nature reviews. Mol Cell Biol. 2006;7(2):131–42.

    CAS  Google Scholar 

  66. Vuoriluoto K, et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011;30(12):1436–48.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Z, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012;44(8):852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Giles KM, et al. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol Cancer Ther. 2013;12(11):2541–58.

    Article  CAS  PubMed  Google Scholar 

  69. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  70. Laufs S, Schumacher J, Allgayer H. Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle. 2006;5(16):1760–71.

    Article  CAS  PubMed  Google Scholar 

  71. Jacob AN, et al. A receptor tyrosine kinase, UFO/Axl, and other genes isolated by a modified differential display PCR are overexpressed in metastatic prostatic carcinoma cell line DU145. Cancer Detect Prev. 1999;23(4):325–32.

    Article  CAS  PubMed  Google Scholar 

  72. Lee WP, et al. Akt is required for Axl-Gas6 signaling to protect cells from E1A-mediated apoptosis. Oncogene. 2002;21(3):329–36.

    Article  CAS  PubMed  Google Scholar 

  73. Nakano T, et al. Biological properties and gene expression associated with metastatic potential of human osteosarcoma. Clin Exp Metastasis. 2003;20(7):665–74.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang JQ, et al. Differentially expressed genes in human giant-cell lung cancer lines with different metastatic potentials. Zhonghua Zhong Liu Za Zhi. 2004;26(10):590–3.

    CAS  PubMed  Google Scholar 

  75. Tai K-Y, et al. Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-kappaB and Brg-1. Oncogene. 2008;27(29):4044–55.

    Article  CAS  PubMed  Google Scholar 

  76. Cui Z-L, et al. YES-associated protein 1 promotes adenocarcinoma growth and metastasis through activation of the receptor tyrosine kinase Axl. Int J Immunopathol Pharmacol. 2012;25(4):989–1001.

    Article  CAS  PubMed  Google Scholar 

  77. Rankin EB, et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc Natl Acad Sci U S A. 2014;111(37):13373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li Y, et al. Axl as a downstream effector of TGF-β1 via PI3K/Akt-PAK1 signaling pathway promotes tumor invasion and chemoresistance in breast carcinoma. Tumour Biol. 2015;36(2):1115–27.

    Article  PubMed  CAS  Google Scholar 

  79. Reichl P, et al. Axl activates autocrine transforming growth factor-β signaling in hepatocellular carcinoma. Hepatology. 2015;61(3):930–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hromas R, et al. Forced over-expression of the myeloid zinc finger gene MZF-1 inhibits apoptosis and promotes oncogenesis in interleukin-3-dependent FDCP.1 cells. Leukemia. 1996;10(6):1049–50.

    CAS  PubMed  Google Scholar 

  81. Hromas R, Morris J, Cornetta K. Aberrant expression of the myeloid zinc finger gene, MZF-1, is oncogenic. Cancer Res. 1995;55:3610–4.

    CAS  PubMed  Google Scholar 

  82. Hsieh Y-H, et al. Suppression of tumorigenicity of human hepatocellular carcinoma cells by antisense oligonucleotide MZF-1. Chin J Physiol. 2007;50(1):9–15.

    CAS  PubMed  Google Scholar 

  83. Mudduluru G, Leupold JH, et al. PMA up-regulates the transcription of Axl by AP-1 transcription factor binding to TRE sequences via the MAPK cascade in leukaemia cells. Biol Cell. 2010;103(1):21–33.

    Article  PubMed  CAS  Google Scholar 

  84. Mudduluru G, Allgayer H. The human receptor tyrosine kinase Axl gene--promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation. Biosci Rep. 2008;28(3):161–76.

    CAS  PubMed  Google Scholar 

  85. Dunne PD, et al. AXL is a key regulator of inherent and chemotherapy-induced invasion and predicts a poor clinical outcome in early-stage colon cancer. Clin Cancer Res. 2014;20(1):164–75.

    Article  CAS  PubMed  Google Scholar 

  86. Huang JS, et al. Oxidative stress enhances Axl-mediated cell migration through an Akt1/Rac1-dependent mechanism. Free Radic Biol Med. 2013;65:1246–56.

    Article  CAS  PubMed  Google Scholar 

  87. Kirane A, et al. Warfarin blocks Gas6-mediated Axl activation required for pancreatic cancer epithelial plasticity and metastasis. Cancer Res. 2015;75(18):3699–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu S, et al. Design, synthesis, and validation of Axl-targeted monoclonal antibody probe for microPET imaging in human lung cancer xenograft. Mol Pharm. 2014;11(11):3974–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tokarz P, Blasiak J. The role of microRNA in metastatic colorectal cancer and its significance in cancer prognosis and treatment. Acta Biochim Pol. 2012;59(4):467–74.

    CAS  PubMed  Google Scholar 

  90. Yakes FM, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.

    Article  CAS  PubMed  Google Scholar 

  91. Al-Hajj M, et al. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev. 2004;14(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  92. Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112(13):4793–807.

    Article  CAS  PubMed  Google Scholar 

  93. Knudson AG, Strong LC, Anderson DE. Heredity and cancer in man. Prog Med Genet. 1973;9:113–58.

    PubMed  Google Scholar 

  94. Morrison SJ, et al. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J Immunol. 2002;168(2):635–42.

    Article  CAS  PubMed  Google Scholar 

  95. Saadatpour A, et al. Single-cell analysis in cancer genomics. Trends Genet. 2015;31(10):576–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol. 2004;51(1):1–28.

    Article  PubMed  Google Scholar 

  97. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature reviews. Cancer. 2008;8(10):755–68.

    CAS  PubMed  Google Scholar 

  98. Bao B. et al. (2013) Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Current protocols in pharmacology/editorial board, S.J. Enna (editor-in-chief). [et al.], Chapter 14, Unit 14.25

    Google Scholar 

  99. Ahtiainen L, et al. Defects in innate immunity render breast cancer initiating cells permissive to oncolytic adenovirus. PLoS One. 2010;5(11):e13859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cichoń MA, et al. The receptor tyrosine kinase Axl regulates cell-cell adhesion and stemness in cutaneous squamous cell carcinoma. Oncogene. 2014;33(July 2013):4185–92.

    Article  PubMed  CAS  Google Scholar 

  101. Asiedu MK, et al. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene. 2014;33(10):1316–24.

    Article  CAS  PubMed  Google Scholar 

  102. Bansal N, et al. Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells. Oncotarget. 2015;6(17):15321–31.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Grosso S, et al. Gene expression profiling of imatinib and PD166326-resistant CML cell lines identifies Fyn as a gene associated with resistance to BCR-ABL inhibitors. Mol Cancer Ther. 2009;8:1924–33.

    Article  CAS  PubMed  Google Scholar 

  104. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275–92.

    Article  CAS  PubMed  Google Scholar 

  105. Macleod K, et al. Altered ErbB receptor signaling and gene expression in cisplatin-resistant ovarian cancer. Cancer Res. 2005;65(15):6789–800.

    Article  CAS  PubMed  Google Scholar 

  106. Hong J, et al. ABL regulation by AXL promotes cisplatin resistance in esophageal cancer. Cancer Res. 2013;73(1):331–40.

    Article  CAS  PubMed  Google Scholar 

  107. Kurokawa M, et al. Cisplatin influences acquisition of resistance to molecular-targeted agents through epithelial-mesenchymal transition-like changes. Cancer Sci. 2013;104(7):904–11.

    Article  CAS  PubMed  Google Scholar 

  108. Cirone P, et al. Patient-derived xenografts reveal limits to PI3K/mTOR- and MEK-mediated inhibition of bladder cancer. Cancer Chemother Pharmacol. 2014;73(3):525–38.

    Article  CAS  PubMed  Google Scholar 

  109. Kim K-C, Lee C. Reversal of Cisplatin resistance by epigallocatechin gallate is mediated by downregulation of axl and tyro 3 expression in human lung cancer cells. Korean J Physiol Pharmacol. 2014;18(1):61–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Holland SJ, et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 2010;70(4):1544–54.

    Article  CAS  PubMed  Google Scholar 

  111. Brand TM, et al. AXL is a logical molecular target in head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21(11):2601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hong CC, et al. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett. 2008;268(2):314–24.

    Article  CAS  PubMed  Google Scholar 

  113. Kim M-S, et al. Heterogeneity of pancreatic cancer metastases in a single patient revealed by quantitative proteomics. Mol Cell Proteomics. 2014;13(11):2803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu L, et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res. 2009;69(17):6871–8.

    Article  CAS  PubMed  Google Scholar 

  115. Zhou L, et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene. 2016;35(21):2687–97. doi:10.1038/onc.2015.343.

    Article  CAS  PubMed  Google Scholar 

  116. Martinho O, Zucca LE, Reis RM. AXL as a modulator of sunitinib response in glioblastoma cell lines. Exp Cell Res. 2015;332(1):1–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Cancer Consortium (DKTK). I thank Prof. Ulrike Stein for her suggestions, critical reading and encouragement in writing this chapter and Harikrishna Raddhakrishna, Steffen Fuchs, and Kathrina Ilm for their critical reading and discussion of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giridhar Mudduluru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mudduluru, G. (2017). Axl and Its Mediated Signaling Axis in Cancer. In: Haybaeck, J. (eds) Mechanisms of Molecular Carcinogenesis – Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-53659-0_3

Download citation

Publish with us

Policies and ethics