Skip to main content

Bohmian Stochastic Trajectories

  • Chapter
  • First Online:
  • 1038 Accesses

Abstract

In the last decades, many nonlinear extensions of the Schrödinger equation have been proposed in literature either to explore the fundamental aspects of quantum mechanics, with the usual linear theory representing only a limiting case, or to describe open quantum systems. For the description of nonconservative quantum systems, Kostin formulated in an heuristic way the so-called Schrödinger–Langevin (SL) equation or Kostin equation, for the Brownian motion. This equation has been subsequently rederived, improved and extended for its use in numerous applications, mainly without including the noise term. Numerous features of this SL equation can be better revealed within the framework of de Broglie–Bohm (quantum hydrodynamical trajectory formulation) of quantum mechanics. Within this formalism, several dissipative problems are presented and discussed: the Ramsauer–Townsend effect, the tunneling dynamics through a barrier, the plasma fluid formulation and the Lorentz–Abraham (extended electron) equation for a point-charge electron. These two last examples are also discussed in order to see the correspondence between classical and quantum dynamics. Very few applications of this SL equation are devoted to stochastic problems in the literature where the noise term needs to be included. The so-called Bohmian–Brownian motion is introduced in the context of surface diffusion with single adsorbates. An extension to interacting adsorbates is discussed within a simple, phenomenological model. Interestingly enough, this study leads us to quantum anomalous diffusion. The harmonic motion is also briefly considered in order to compare with the same open dynamics under the presence of a continuous quantum measurement (Chap. 4). Finally, a generalization of the SL equation is proposed for nonlinear dissipation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The \(\delta \)–function counts only one half when the integration is carried out from zero to infinity.

  2. 2.

    At finite coverages, one usually distinguishes between two diffusion coefficients: the tracer and the collective diffusion constants [117]. The first one refers to the self–diffusion process and focuses on the motion of a single adsorbate. On the contrary, the second is related to the collective motion of all adsorbates which is governed by Fick’s law. In any case, a Kubo–Green formula relates both diffusion coefficients with the velocity autocorrelation function of a single adsorbate or with the corresponding of the velocity of the center of mass, respectively.

References

  1. Percival, I.: Quantum State Diffusion. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  3. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    Google Scholar 

  4. Sanz, A.S., Miret-Artés, S.: A Trajectory Description of Quantum Processes. I. Fundamentals. Lecture Notes in Physics, vol. 850, pp. 1–299 (2012)

    Google Scholar 

  5. Sanz, A.S., Miret-Artés, S.: A Trajectory Description of Quantum Processes. II. Applications. Lecture Notes in Physics, vol. 831, pp. 1–333 (2014)

    Google Scholar 

  6. Accardi, L., Lu, Y.G., Volovich, I.: Quantum Theory and its Stochastic Limit. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  7. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2004)

    Google Scholar 

  8. Razavy, M.: Classical and Quantum Dissipative Systems. Imperial College Press, London (2005)

    MATH  Google Scholar 

  9. Ford, G.W., O’Conell, R.F.: There is no quantum regression theorem. Phys. Rev. Lett. 77, 798–801 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kohen, D., Tannor, D.J.: Phase space approach to dissipative molecular dynamics. Adv. Chem. Phys. 111, 219–398 (2000)

    Google Scholar 

  11. Oxtoby, D.W.: Dephasing of molecular vibrations in liquids. Adv. Chem. Phys. 40, 1–48 (1979)

    Google Scholar 

  12. Levine, A.M., Shapiro, M., Pollak, E.: Hamiltonian theory for vibrational dephasing rates of small molecules in liquids. J. Chem. Phys. 88, 1959–1966 (1988)

    Article  ADS  Google Scholar 

  13. Bader, J.S., Berne, B.J., Pollak, E., Hänggi, P.: The energy relaxation of a nonlinear oscillator coupled to a linear bath. J. Chem. Phys. 104, 1111–1119 (1996)

    Article  ADS  Google Scholar 

  14. Bader, J.S., Berne, B.J.: Quantum and classical relaxation rates from classical simulations. J. Chem. Phys. 100, 8359–8366 (1994)

    Google Scholar 

  15. Egorov, S.A., Berne, B.J.: Vibrational energy relaxation in the condensed phases: quantum vs classical bath for multiphonon processes. J. Chem. Phys. 107, 6050–6061 (1997)

    Article  ADS  Google Scholar 

  16. Kostin, M.D.: On the Schrödinger-Langevin equation. J. Chem. Phys. 57, 3589–3591 (1972)

    Article  ADS  Google Scholar 

  17. Kostin, M.D.: Friction and dissipative phenomena in quantum mechanics. J. Stat. Phys. 12, 145–151 (1975)

    Article  ADS  Google Scholar 

  18. Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gisin, N.: A simple nonlinear dissipative quantum evolution equation. J. Phys. A 14, 2259–2267 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gisin, N.: Microscopic derivation of a class of non-linear dissipative Schrödinger-like equations. Phys. A 111, 364–370 (1982)

    Article  MathSciNet  Google Scholar 

  21. Nassar, A.B.: Derivation of a generalized nonlinear Schrödinger-Langevin equation. Phys. Lett. A 109, 1–3 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  22. Nassar, A.B.: Ermakov and non-Ermakov systems in quantum dissipative models. J. Math. Phys. 27, 755–758 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  23. Nassar, A.B.: Time-dependent invariant associated with nonlinear Schrödinger-Langevin equation. J. Math. Phys. 27, 2949–2952 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Nassar, A.B.: New method for the solution of the logarithmic nonlinear Schrödinger equation via stochastic mechanics. Phys. Rev. A 33, 3502–3505 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  25. Khrennikov, A.: Nonlinear Schrödinger equations from prequantum classical statistical field theory. Phys. Lett. A 357, 171–176 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Weinberg, S.: Testing quantum mechanics. Ann. Phys. 194, 336–386 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  27. Polchinski, J.: Weinberg’s nonlinear quantum mechanics and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 66, 397–400 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bassalo, J.M.F., da Silva, D.G., Nassar, A.B., Cattani, M.S.D.: The Feynman’s propagators for non-linear Schrödinger equations. J. Adv. Math. Appl. 1, 1–30 (2012)

    Google Scholar 

  29. Senitzky, I.R.: Dissipation in quantum mechanics. The harmonic oscillator. Phys. Rev. 119, 670–679 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Ford, G.W., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6, 504–515 (1965)

    Google Scholar 

  31. Katz, R., Gossiaux, P.B.: The Schrödinger–Langevin equation with and without thermal fluctuations. Ann. Phys. (NY) 368, 267–295 (2016)

    Article  ADS  Google Scholar 

  32. Messer, J.: Friction in quantum mechanics. Acta Phys. Austriaca 50, 75–91 (1979)

    Google Scholar 

  33. Hänggi, P., Jung, P.: Colored noise in dynamical systems. Adv. Chem. Phys. LXXXIX, 239-326 (1995)

    Google Scholar 

  34. Tsekov, R., Vayssilov, G.N.: Quantum Brownian motion and classical diffusion. Chem. Phys. Lett. 195, 423–426 (1992)

    Article  ADS  Google Scholar 

  35. Tsekov, R.: Nonlinear theory of quantum Brownian motion. Int. J. Theor. Phys. 48, 85–94 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tsekov, R.: Thermo-quantum diffusion. Int. J. Theor. Phys. 48, 630–636 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hasse, R.W.: On the quantum mechanical treatment of dissipative systems. J. Math. Phys. 16, 2005–2011 (1975)

    Article  ADS  Google Scholar 

  38. Nassar, A.B.: Irreversible quantum hydrodynamics from kinetic theory. Ann. Phys. 210, 137–177 (1991)

    Google Scholar 

  39. Schuch, D.: Nonunitary connection between explicitly time-dependent and nonlinear approaches for the description of dissipative quantum systems. Phys. Rev. A 55, 935–940 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  40. Schuch, D., Chung, K.M., Hartmann, H.: Nonlinear Schrödinger equation-type field equation for the description of dissipative systems. I. Derivation of the nonlinear field equation and one-dimensional example. J. Math. Phys. 24, 1652–1660 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Schuch, D., Chung, K.M., Hartmann, H.: Nonlinear Schrödinger equation-type field equation for the description of dissipative systems. III. Frictionally damped free motion as an example for an aperiodic motion. J. Math. Phys. 24, 3086–3092 (1984)

    Article  ADS  Google Scholar 

  42. Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  43. Chou, C.-C.: Dissipative quantum trajectories in complex space: damped harmonic oscillator. Ann. Phys. (NY) 373, 325–345 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  44. Doebner, H.-D., Goldin, G.A.: On a general nonlinear Schrödinger equation admitting diffusion currents. Phys. Lett. A 162, 397–401 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  45. Razavy, M.: Quantization of dissipative systems. Z. Phys. B 26, 201–206 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  46. Wagner, H.-J.: Schrödinger quantization and variational principles in dissipative quantum theory. Z. Phys. B 95, 261–273 (1994)

    Article  ADS  Google Scholar 

  47. Schuch, D.: Effective description of the dissipative interaction between simple and model-system and their environment. Int. J. Quantum Chem. 72, 537–547 (1999)

    Article  Google Scholar 

  48. Skagerstam, B.K.: Stochastic mechanics and dissipative forces. J. Math. Phys. 18, 308–311 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  49. Yasue, K.: Quantum mechanics of nonconservative systems. Ann. Phys. (NY) 114, 479–496 (1978)

    Article  ADS  Google Scholar 

  50. Tsekov, R.: Dissipative time dependent density functional theory. Int. J. Theor. Phys. 48, 2660–2664 (2009)

    Google Scholar 

  51. Yuen-Zhou, J., Tempel, D.G., Rodriguez-Rosario, C.A., Aspuru-Guzik, A.: Time-dependent density functional theory for open quantum systems with unitary propagation. Phys. Rev. Lett. 104, 043001(1–4) (2010)

    Google Scholar 

  52. Haas, F., Bassalo, J.M.F., da Silva, D.G., Nassar, A.B., Cattani, M.: Time-dependent Gaussian solution for the Kostin equation around classical trajectories. Int. J. Theor. Phys. 52, 88–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Garashchuk, S., Dixit, V., Gu, B., Mazzuca, J.: The Schrödinger equation with friction from the quantum trajectory perspective. J. Chem. Phys. 138, 054107(1–7) (2013)

    Google Scholar 

  54. Bargueño, P., Miret-Artés, S.: The generalized Schrödinger–Langevin equation. Ann. Phys. (NY) 346, 59–65 (2014)

    Article  ADS  MATH  Google Scholar 

  55. Chou, C.-C.: Trajectory approach to the Schrödinger–Langevin equation with linear dissipation for ground states. Ann. Phys. (NY) 362, 57–73 (2015)

    Google Scholar 

  56. Haas, F.: The damped Pinney equation and its applications to dissipative quantum mechanics. Phys. Scr. 81, 025004(1–7) (2010)

    Google Scholar 

  57. Ramsauer, C.: Über den Wirkungsquerschnitt der Gasmoleküle gegenüber langsamen Elektronen. Annalen der Physik 396, 513–540 (1921)

    Article  ADS  Google Scholar 

  58. Townsend, J.S., Bailey, M.A.: The motion of electrons in argon. Phil. Mag. 43, 593–600 (1922)

    Article  Google Scholar 

  59. Ramsauer, C., Kollath, R.: Über den Wirkungsquerschnitt der Edelgasmoleküle gegenüber Elektronen. Annalen der Physik 395, 536–564 (1929)

    Article  ADS  Google Scholar 

  60. C\(\hat{o}\)té, R., Heller, E. J., Dalgarno, A.: Quantum suppression of cold atom collisions. Phys. Rev. A 53, 234–241 (1996)

    Google Scholar 

  61. Zhao, B.S., Meijer, G., Schöllkopf, W.: Quantum reflection of \(He_2\) several nanometers above a grating surface. Science 331, 892–894 (2011)

    Article  ADS  Google Scholar 

  62. Bassalo, J.M.F., Cattani, M.S.D., Alencar, P.T.S., Nassar, A.B.: Tópicos da Mecânica Quântica de de Broglie-Bohm (2010). Capítulo 5: http://publica-sbi.if.usp.br/PDFs/pd1655.pdf

  63. Kukolich, S.G.: Demonstration of the Ramsauer–Townsend effect in a Xenon Thyratron. Am. J. Phys. 36, 701–703 (1968)

    Article  ADS  Google Scholar 

  64. Mott, N.F., Massey, H.S.W.: The Theory of Atomic Collisions. Clarendon Press, Oxford (1971)

    MATH  Google Scholar 

  65. Brode, R.B.: The quantitative study of the collision of electrons with atoms. Rev. Mod. Phys. 5, 257–279 (1933)

    Article  ADS  Google Scholar 

  66. Nassar, A.B.: Effect of dissipation on scatterring and tunneling through sharp-edged potential barriers. DFUFPA, preprint (1998)

    Google Scholar 

  67. Sometimes, it is convenient to express the wave function in either polar form: \(\psi =\phi \exp iS/\hbar \) or \(\psi =\phi \exp iS\), where the velocity \(v=\frac{1}{m}\frac{\partial S}{\partial x}\) or \(v=\frac{\hbar }{m}\frac{\partial S}{\partial x}\), respectively

    Google Scholar 

  68. Guerra, F.: Structural aspects of stochastic mechanics and stochastic field theory, Phys. Rep. 77, 263–312 (1981). (The same volume 77 is entirely devoted to New Stochastic Methods in Physics, edited by C. DeWitt-Morette, K.D. Elworthy)

    Google Scholar 

  69. Ghosh, S.K., Deb, B.M.: Quantum fluid dynamics with a relativistic density-functional framework. J. Phys. A Math. Gen. 17, 2463–2473 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Putterman, S.J., Roberts, P.: Classical non-linear waves in dispersive nonlocal media, and the theory of superfluidity. Phys. A 117, 369–397 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  71. Takabayasi, T.: Vortex, spin and triad for quantum mechanics of spinning particle. I: general theory. Prog. Theor. Phys. 70, 1–17 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Bohm, D., Hiley, B.J.: Measurement understood through the quantum approach. Found. Phys. 14, 255–274 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  73. Nassar, A.B.: Fluid formulation of a generalised Schrödinger–Langevin equation. J. Phys. A Math. Gen. 18, L509–L511 (1985)

    Google Scholar 

  74. Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40, 322–326 (1926)

    Article  ADS  MATH  Google Scholar 

  75. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180–193 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. McGraw-Hill, New York (1973)

    Google Scholar 

  78. Tanenbaum, B.S.: Plasma Physics. McGraw-Hill, New York (1967)

    Google Scholar 

  79. Mengoli, M., Molinari, V.G., Pizzo, F.: Nonlinear electron oscillation driven by an external wave in a plasma. Il Nuovo Cimento B 76, 130–138 (1983)

    Article  ADS  Google Scholar 

  80. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  81. Caldeira, A.O., Leggett, A.J.: Influence of damping on quantum interference: an exactly soluble model. Phys. Rev. A 31, 1059–1066 (1985)

    Article  ADS  Google Scholar 

  82. Grubin, H.L., Kreskovsky, J.P.: Quantum moment balance equations and resonant tunneling structures. Solid-State Electron. 32, 1071–1075 (1989)

    Article  ADS  Google Scholar 

  83. Grubin, H.L., Kreskovsky, J.P., Grovindan, T.R., Ferry, D.K.: Uses of the quantum potential in modelling hot-carrier semiconductos devices. Semicond. Sci. Technol. 9, 855–858 (1994)

    Article  ADS  Google Scholar 

  84. Lorentz, H.A.: La theórie eléctromagnetique de Maxwell et son application aux corps mouvemants. Arch. Neérl. Sci. Exactes Nat. 25, 363–552 (1892)

    MATH  Google Scholar 

  85. Lorentz, H.A.: The Theory of Electrons, Teubner, Leipzig (1909). (2nd edn, 1916)

    Google Scholar 

  86. Abraham, M.: Theorie der Elektrizitat. Vol II: Elektromagnetische Theorie der Strahlung, Teubner, Leipzig (1905)

    Google Scholar 

  87. Rohrlich, F.: The dynamics of a charged sphere and the electron. Am. J. Phys. 65, 1051–1056 (1997)

    Article  ADS  Google Scholar 

  88. Rohrlich, F.: The self-force and radiation reaction. Am. J. Phys. 68, 1109–1112 (2000)

    Article  ADS  Google Scholar 

  89. Rohrlich, F.: Classical Charged Particles. Addison-Wesley, Reading, MA (1965)

    MATH  Google Scholar 

  90. Griffiths, D.: Introduction to Electrodynamics. Prentice Hall, New York (2004)

    Google Scholar 

  91. Sommerfeld, A.: Simplified deduction of the field and the forces of an electron moving in any given way. Proc. R. Acad. Amst. 7, 346–367 (1905))

    Google Scholar 

  92. Page, L.: Is a moving mass retarded by the reaction of its own radiation? Phys. Rev. 11, 376–400 (1918)

    Article  ADS  Google Scholar 

  93. Kim, K.-J., Sessler, A.M.: 8th Workshop on Advanced Acceleration Concepts. Baltimore, MD (1998)

    Google Scholar 

  94. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1998)

    MATH  Google Scholar 

  95. Moniz, E.J., Sharp, D.H.: Radiation reaction in nonrelativistic quantum electrodynamics. Phys. Rev. D 15, 2850–2865 (1977)

    Article  ADS  Google Scholar 

  96. Levine, H., Moniz, E.J., Sharp, D.H.: Motion of extended charges in classical electrodynamics. Am. J. Phys. 45, 75–78 (1977)

    Article  ADS  Google Scholar 

  97. Cook, R.J.: Radiation reaction revisited. Am. J. Phys. 52, 894–895 (1984)

    Article  ADS  Google Scholar 

  98. Low, F.: Run-Away Electrons in Relativistic Spin 1/2 Quantum Electrodynamics. Preprint MIT- CTP-2522 (1997)

    Google Scholar 

  99. Denef, F., Raeymaekers, J., Studer, U.M., Troost, W.: Classical tunneling as a consequence of radiation reaction forces. Phys. Rev. E 56, 3624–3627 (1997)

    Article  ADS  Google Scholar 

  100. Feynman, R.P.: Statistical Mechanics. Perseus Books, Cambridge (1998)

    MATH  Google Scholar 

  101. Lovesey, S.W.: Theory of Neutron Scattering from Condensed Matter. Clarendon, Oxford (1984)

    Google Scholar 

  102. Caldeira, A.O., Leggett, A.J.: Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981)

    Article  ADS  Google Scholar 

  103. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Phys. A 121, 587–616 (1983)

    Google Scholar 

  104. Ford, G.W., Kac, M.: On the quantum Langevin equation. J. Stat. Phys. 46, 803–810 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Sánchez-Cañizares, J., Sols, F.: Translational symmetry and microscopic preparation in oscillator models of quantum dissipation. Phys. A 122, 181–193 (1994)

    Article  Google Scholar 

  106. Miret-Artés, S., Pollak, E.: The dynamics of activated surface diffusion. J. Phys. Condens. Matter 17, S4133–S4150 (2005)

    Article  ADS  Google Scholar 

  107. Martínez-Casado, R., Sanz, A.S., Vega, J.L., Rojas-Lorenzo, G., Miret-Artés, S.: Linear response theory of activated surface diffusion with interacting adsorbates. Chem. Phys. 370, 180–193 (2010)

    Article  ADS  Google Scholar 

  108. Van Hove, L.V.: Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249–262 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. Vineyard, G.H.: Scattering of slow neutrons by a liquid. Phys. Rev. 110, 999–1010 (1958)

    Article  ADS  Google Scholar 

  110. McQuarrie, D.A.: Statistical Mechanics. Harper and Row, New York (1976)

    MATH  Google Scholar 

  111. Ellis, J., Graham, A.P., Hofmann, F., Toennies, J.P.: Coverage dependence of the microscopic diffusion of Na atoms on the Cu(001) surface: a combined helium atom scattering experiment and molecular dynamics study. Phys. Rev. B 63, 195408(1–9) (2001)

    Google Scholar 

  112. Martínez–Casado, R., Vega, J.L., Sanz, A.S., Miret–Artés, S.: Surface diffusion and low vibrational motion with interacting adsorbates: a shot noise description. Phys. Rev. E 75, 051128(1–12) (2007)

    Google Scholar 

  113. Martínez–Casado, R., Vega, J.L., Sanz, A.S., Miret–Artés, S.: Line shape broadening in surface diffusion of interacting adsorbates with quasielastic He atom scattering. Phys. Rev. Lett. 98, 216102(1–4) (2007)

    Google Scholar 

  114. Martínez–Casado, R., Vega, J.L., Sanz, A.S., Miret–Artés, S.: Stochastic theory of lineshape broadening in quasielastic He atoms scattering with interacting adsorbates. Phys. Rev. B 77, 115414(1–5) (2008)

    Google Scholar 

  115. Martínez–Casado, R., Vega, J.L., Sanz, A.S., Miret–Artés, S.: Quasielastic He atom scattering from surfaces: a stochastic description of the dynamics of interacting adsobates. J. Phys.: Condens. Matter 19, 305002(1–27) (2007)

    Google Scholar 

  116. van Vleck, J.H., Weisskopf, V.F.: On the shape of collision-broadened lines. Rev. Mod. Phys. 17, 227–235 (1945)

    Article  ADS  Google Scholar 

  117. Gomer, R.: Diffusion of adsorbates on metal surface. Rep. Prog. Phys. 53, 917–1002 (1990)

    Article  ADS  Google Scholar 

  118. Wolfgang, P., Baschnagel, J.: Stochastic Processes. From Physics to Finance. Springer, Berlin (1999)

    Google Scholar 

  119. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Vega, J.L., Guantes, R., Miret-Artés, S.: Chaos and transport properties of adatoms on solid surfaces. J. Phys. Condens. Matter 14, 6193–6232 (2002)

    Article  ADS  Google Scholar 

  121. Chudley, C.T., Elliott, R.J.: Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc. 77, 353–361 (1961)

    Article  ADS  Google Scholar 

  122. Martínez–Casado, R., Vega, J.L., Sanz, A.S., Miret–Artés, S.: A generalized Chudley-Elliott vibration-jump model in activated atom surface diffusion. J. Chem. Phys. 126, 194711(1–5) (2007)

    Google Scholar 

  123. Sancho, J.M., San Miguel, M., Katz, S.L., Gunton, J.D.: Analytical and numerical studies of multiplicative noise. Phys. Rev. A 26, 1589–1609 (1982)

    Article  ADS  Google Scholar 

  124. Stevens, K.H.: The theory of planar methyl rotation. J. Phys. C 16, 5765–5772 (1983)

    Article  ADS  Google Scholar 

  125. Ambegaokar, V., Eckern, U.: Quantum dynamics of tunneling between superconductors: microscopic theory rederived via an oscillator model. Z. Physik B 69, 399–407 (1987)

    Article  ADS  Google Scholar 

  126. Dorta-Urra, A., Peñate-Rodriguez, H.C., Bargueño, P., Rojas-Lorenzo, G., Miret-Artés, S.: Dissipative geometric phase and decoherence in parity-violating chiral molecules. J. Chem. Phys. 136, 174505(1–6) (2012)

    Google Scholar 

  127. Miret-Artés, S., Pollak, E.: Classical theory of atom-surface scattering: the rainbow effect. Surf. Sci. Rep. 67, 161–200 (2012)

    Article  ADS  Google Scholar 

  128. Nassar, A.B., Miret-Artés, S.: Dividing line between quantum and classical trajectories in a measurement problem: Bohmian time constant. Phys. Rev. Lett. 111, 150401(1–5) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio B. Nassar .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nassar, A.B., Miret-Artés, S. (2017). Bohmian Stochastic Trajectories. In: Bohmian Mechanics, Open Quantum Systems and Continuous Measurements. Springer, Cham. https://doi.org/10.1007/978-3-319-53653-8_3

Download citation

Publish with us

Policies and ethics