Skip to main content

Water and Nutrient Supply in Horticultural Crops Grown in Soilless Culture: Resource Efficiency in Dynamic and Intensive Systems

  • Chapter
  • First Online:
Advances in Research on Fertilization Management of Vegetable Crops

Part of the book series: Advances in Olericulture ((ADOL))

Abstract

It is currently possible to exploit specialised and standardised growing techniques in a context in which both land and water are becoming scarce. Agronomic innovation and automation are being coupled to an increasing sensitivity towards environment protection and a reduction in input losses. Consequently, modern horticulture is shifting from traditional culture systems, in the open field, to protected cultivation and soilless culture systems (SCS). Protected cultivation and SCS allow the provision of water and nutrients to the plant root system to be controlled and regulated, thus favouring root oxygenation. The punctual and real crop needs are satisfied by the hydroponic nutrient solution (HNS) . SCS introduce both resource optimisation and a reduction in losses, and thus increase food security and profitability in modern dynamic and intensive systems. Some SCS require the use of substrates or substrate mixes that must be chemically stable and should prevent the release of elements that can interfere with the HNS composition, thus inducing both phytotoxicity and microbial contamination. An HNS should be formulated using microbiologically safe water, and calibrating the macro-, meso- and micronutrients on the basis of the chemical composition of the water. However, it is also necessary to consider the interactions that occur in an HNS formulation between the individual elements that can affect plant growth, crop yield and injury susceptibility. Indicators, such as pH, electrical conductivity, oxygen content and temperature, should be checked periodically. The HNS supply period per day, volume per unit area or per plant, and the number of events during the day should be determined and tailored for a proper plant production in SCS. The HNS supply, whether continuous or discontinuous, can be supplied directly to the root using sub-irrigation or nebulisation systems, or from the aerial part using drip irrigation or sprinkling systems. The water and nutrient supply in SCS can be organized either through open-cycle hydroponic systems, in which the plants are fed with a specifically prepared HNS, without recovering the drainage, or through closed-cycle hydroponic systems, in which the drainage is collected, analysed, sanitised, integrated with the absorbed nutrients and re-inserted into the system. Each horticultural crop has its own specific water and nutrient supply needs that arise from specific physiological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad M, Noguera P (1998) Sustratos para el cultivo sin suelo y fertirrigación. In: Cadahía C (ed) Fertirrigación – Cultivos Hortícolas y Ornamentales. Mundi-Prensa, Madrid, pp 287–342

    Google Scholar 

  • Abou Hadid AF (2013) Protected cultivation for improving water-use efficiency of vegetable crops in the NENA region. In: Baudoin W et al (eds) Good agricultural practices for greenhouse vegetable crops: principles for Mediterranean climate areas. FAO, Rome, pp 137–148

    Google Scholar 

  • Adams P (2002) Nutritional control in hydroponics. In: Savvas D, Passam H (eds) Hydroponic production of vegetables and ornamentals. Embryo Publications, Athens, pp 211–262

    Google Scholar 

  • Aznar-Sánchez JA, Galdeano-Gómez E (2011) Territory, cluster and competitiveness of the intensive horticulture in Almería (Spain). Open Geograph J 4:103–114

    Article  Google Scholar 

  • Bar-Yosef B (2008) Fertigation management and crops response to solution recycling in semi closed greenhouses. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier B.V, Amsterdam, pp 343–424

    Google Scholar 

  • Benoit F, Ceustermans N (1995) A decade of research on ecologically sound substrates. Acta Hortic 408:17–30

    Article  Google Scholar 

  • Blokhina O, Irolainen E, Faterstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boland AM, Jerie PH, Mitchell PD, Goodwin I, Connor DJ (2000) Long-term effects of restricted root volume and regulated deficit irrigation on peach: I. Growth and mineral nutrition. J Am Soc Hortic Sci 125(1):135–142

    Google Scholar 

  • Boodley JW, Sheldrake R (1977) Cornell peat-lite mixes for commercial plant growing. A Cornell Cooperative Extension Publication, Informational Bulletin 43, pp 1–8

    Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159(6):567–584

    Article  CAS  Google Scholar 

  • Bunt AC (1988) Media and mixes for container-grown plants: a manual on the preparation and use of growing media for pot plants. Springer, Dordrecht, pp 1–309

    Book  Google Scholar 

  • Burns IG, Lee A, Escobar-Gutierrez AJ (2004) Nitrate accumulation in protected lettuce. Acta Hortic 633:271–278

    Article  CAS  Google Scholar 

  • Cárdenas-Navarro R, Adamowicz S, Robin P (1999) Nitrate accumulation in plants: a role for water. J Exp Bot 50(334):613–624

    Article  Google Scholar 

  • Carmassi G, Incrocci L, Maggini R, Malorgio F, Tognoni F, Pardossi A (2005) Modeling salinity build-up in recirculating nutrient solution culture. J Plant Nutr 28(3):431–445

    Article  CAS  Google Scholar 

  • Castilla N (2013) Greenhouse technology and management, 2nd edn. CPI Group Ltd, Cambridge, pp 1–335

    Book  Google Scholar 

  • Cattivello C (2009) Aspetti ambientali, tecnici e commerciali legati all’impiego della torba: presente e futuro del componente base dei substrati. Fertilitas Agrorum 3(1):7–15

    Google Scholar 

  • Coelho F, Or D (1999) Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation. Plant Soil 206(2):123–136

    Article  Google Scholar 

  • Colla G, Saccardo F (2003) Application of systematic variation method for optimizing mineral nutrition of soilless-grown Zucchini squash. J Plant Nutr 26(9):1859–1872

    Article  CAS  Google Scholar 

  • Conte A, Conversa G, Scrocco C, Brescia I, Laverse J, Elia A, Del Nobile MA (2008) Influence of growing periods on the quality of baby spinach leaves at harvest and during storage as minimally processed produce. Postharvest Biol Technol 50(2):190–196

    Article  Google Scholar 

  • Cooper AJ (1979) The ABC of NFT. Nutrient film technique. The World’s first method of crop production without a solid rooting medium. Grower Books, London, pp 1–181

    Google Scholar 

  • Cornillon P, Fellahi A (1993) Influence of root temperature on potassium nutrition of tomato plant. In: Fragoso MAC, van Beusichem ML (eds) Optimization of plant nutrition. Kluwer Academic Publishers, Dordrecht, pp 213–217

    Chapter  Google Scholar 

  • De Pascale S, Barbieri G (2000) Gestione della soluzione nutritiva nelle coltivazioni floricole fuorisuolo: aspetti agroambientali. In: Bianco M, Di Donna A, Galiano R (eds) Proceedings of Convegno sulle Colture Floricole Fuori Suolo – Strategie per la Riduzione dell’Impatto Ambientale, Ercolano (NA), Italy, 25 November 2000, pp 55–80

    Google Scholar 

  • De Pascale S, Maggio A, Angelino G, Graziani G (2003) Effect of salt stress on water relations and antioxidant activity in tomato. Acta Hortic 613:39–46

    Article  CAS  Google Scholar 

  • Degl’Innocenti E, Guidi L, Pardossi A, Tognoni F (2005) Biochemical study of leaf browning in minimally processed leaves of lettuce (Lactuca sativa L. var. Acephala). J Agric Food Chem 53, 26, 9980–9984

    Google Scholar 

  • Dehnen-Schmutz K, Holdenrieder O, Jeger MJ, Pautasso M (2010) Structural change in the international horticultural industry: some implications for plant health. Sci Hortic 125(1):1–15

    Article  Google Scholar 

  • Di Lorenzo R, Pisciotta A, Santamaria P, Scariot V (2013) From soil to soil-less in horticulture: quality and typicity. Ital J Agron 8(30):255–260

    Google Scholar 

  • Dobričević N, Voća S, Borošić J, Novak B (2008) Effects of substrate on tomato quality. Acta Hortic 779:485–490

    Article  Google Scholar 

  • Engindeniz S (2004) The economic analysis of growing greenhouse cucumber with soilless culture system: the case of Turkey. J Sustain Agric 23(3):5–19

    Article  Google Scholar 

  • Enzo M, Lazzarin R, Pimpini F (2001) Soluzioni nutritive. In: Enzo M, Gianquinto G, Lazzarin R, Pimpini F, Sambo P (eds) Principi Tecnico-Agronomici della Fertirrigazione e del Fuori Suolo. Tipografia-Garbin, Padova, pp 107–138

    Google Scholar 

  • Evans MR, Gachukia M (2004) Fresh parboiled rice hulls serve as an alternative to perlite in greenhouse crop substrates. Hortscience 39(2):232–235

    Google Scholar 

  • Fallovo C, Rouphael Y, Cardarelli M, Rea E, Battistelli A, Colla G (2009a) Yield and quality of leafy lettuce in response to nutrient solution composition and growing season. J Food Agric Environ 7(2):456–462

    CAS  Google Scholar 

  • Fallovo C, Rouphael Y, Rea E, Battistelli A, Colla G (2009b) Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J Sci Food Agric 89, 10:1682–1689

    Google Scholar 

  • Fanasca S, Colla G, Maiani G, Venneria E, Rouphael Y, Azzini E, Saccardo F (2006) Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J Agric Food Chem 54(12):4319–4325

    Article  CAS  PubMed  Google Scholar 

  • Ferrante A, Incrocci L, Maggini R, Tognoni F, Serra G (2003) Preharvest and postharvest strategies for reducing nitrate content in rocket (Eruca sativa). Acta Hortic 628:153–159

    Article  CAS  Google Scholar 

  • Fontana E, Nicola S (2008) Producing garden cress (Lepidium sativum L.) for the fresh-cut chain using a soilless culture system. J Hortic Sci Biotech 83(1):23–32

    Article  CAS  Google Scholar 

  • Fontana E, Nicola S (2009) Traditional and soilless culture systems to produce corn salad (Valerianella olitoria L.) and rocket (Eruca sativa Mill.) with low nitrate content. J Food Agric Environ 7(2):405–410

    CAS  Google Scholar 

  • Fontana E, Nicola S, Hoeberechts J, Saglietti D (2003) Soilless culture systems produce ready-to-eat corn salad (Valerianella olitoria L.) of high quality. Acta Hortic 604:505–509

    Article  Google Scholar 

  • Fontana E, Nicola S, Hoeberechts J, Saglietti D, Piovano G (2004) Managing traditional and soilless culture systems to produce corn salad (Valerianella olitoria) with low nitrate content and lasting postharvest shelf-life. Acta Hortic 659:763–768

    Article  Google Scholar 

  • Fontana E, Hoeberechts J, Nicola S, Cros V, Battista PG, Peiretti PG (2006) Nitrogen concentration and nitrate/ammonium ratio affect yield and change the oxalic acid concentration and fatty acid profile of purslane (Portulaca oleracea L.) grown in a soilless culture system. J Sci Food Agric 86(14):2417–2424

    Article  CAS  Google Scholar 

  • Frangi P (2009) Quali component aggiungere ai substrati per migliorarne le caratteristiche? Fertilitas Agrorum 3(1):16–21

    Google Scholar 

  • Fukao T, Bailey-Serres J (2004) Plant responses to hypoxia: is survival a balancing act? Trends Plant Sci 9(9):449–456

    Article  CAS  PubMed  Google Scholar 

  • Galdeano-Gómez E, Aznar-Sánchez JA, Pérez-Mesa JC (2013) Sustainability dimensions related to agricultural-based development: the experience of 50 years of intensive farming in Almería (Spain). Int J Agric Sustain 11(2):125–143

    Article  Google Scholar 

  • Gallardo M, Thompson RB, Fernández MD (2013) Water requirements and irrigation management in Mediterranean greenhouses: the case of the southeast coast of Spain. In: Baudoin W et al (eds) Good agricultural practices for greenhouse vegetable crops: principles for mediterranean climate areas. FAO, Rome, pp 109–136

    Google Scholar 

  • Galloway BA, Monks DW, Schultheis JR (2000) Effect of herbicides on pepper (Capsicum annuum) stand establishment and yield from transplants produced using various irrigation systems. Weed Technol 14(2):241–245

    Article  CAS  Google Scholar 

  • Gent MPN, Ma YZ (1998) Diurnal temperature variation of root and shoot affects yield of greenhouse tomato. Hortscience 33(1):47–51

    Google Scholar 

  • Gianquinto G, Pimpini F (2001) Substrati. In: Enzo M, Gianquinto G, Lazzarin R, Pimpini F, Sambo P (eds) Principi Tecnico-Agronomici della Fertirrigazione e del Fuori Suolo. Tipografia-Garbin, Legnaro, pp 35–66

    Google Scholar 

  • Giardini L (2004) Agronomia Generale Ambientale e Aziendale. Pàtron Editore, Bologna, pp 1–742

    Google Scholar 

  • Giuffrida F, Heuvelink E, Stanghellini C (2008) Effects of root-zone nutrient concentration on cucumber grown in rockwool. Acta Hortic 801:1055–1063

    Article  CAS  Google Scholar 

  • Gonnella M, Serio F, Conversa G, Santamaria P (2003) Yield and quality of lettuce grown in floating system using different sowing density and plant spatial arrangements. Acta Hortic 614:687–692

    Article  Google Scholar 

  • Gorbe E, Calatayud A (2010) Optimization of nutrition in soilless systems: a review. Adv Bot Res 53:193–245

    Article  CAS  Google Scholar 

  • Goto E, Both AJ, Albright LD, Langhans RW, Leed AR (1996) Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. Acta Hortic 440:205–210

    Article  CAS  PubMed  Google Scholar 

  • Grattan SR, Grieve CM (1998) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78(1):127–157

    Article  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31(1):149–190

    Article  CAS  Google Scholar 

  • Grewal HS, Maheshwari B, Parks SE (2011) Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: an Australian case study. Agric Water Manag 98(5):841–846

    Article  Google Scholar 

  • Gruda N (2005) Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit Rev Plant Sci 24(3):227–247

    Article  CAS  Google Scholar 

  • Gruda N (2009) Do soilless culture systems have an influence on product quality of vegetables? J Appl Bot Food Qual 82:141–147

    Google Scholar 

  • Gruda N, Qaeyouti MM, Leonardi C (2013) Growing media. In: Baudoin W et al (eds) Good agricultural practices for greenhouse vegetable crops: principles for mediterranean climate areas. FAO, Rome, pp 271–301

    Google Scholar 

  • Handreck KA, Black ND (2005) Growing media for ornamental plants and Turf, 3rd edn with Revisions, UNSW Press Book, Sydney, pp 1–544.

    Google Scholar 

  • Hitchon GM, Szmidt RAK, Hall DA (1991) A low-technology hydroponic crop production system based on expanded perlite. Acta Hortic 287:431–434

    Article  Google Scholar 

  • Hu MH, Ao YS, Yang XE, Li TQ (2008) Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system. Agric Water Manag 95(5):607–615

    Article  Google Scholar 

  • Hussain A, Iqbal K, Aziem S, Mahato P, Negi AK (2014) A review on the science of growing crops without soil (soilless culture) - a novel alternative for growing crops. Int J Agric Crop Sci 7(11):833–842

    Google Scholar 

  • Incrocci L, Pardossi A, Vernieri P, Tognoni F, Serra G (2000) Effects of heat stress and hypoxia on growth, water relations and ABA levels in bean (Phaseolus vulgaris L.) seedings. Acta Hortic 516:31–40

    Article  CAS  Google Scholar 

  • Incrocci L, Malorgio F, Della BA, Pardossi A (2006) The influence of drip irrigation or subirrigation on tomato grown in closed-loop substrate culture with saline water. Sci Hortic 107(4):365–372

    Article  CAS  Google Scholar 

  • Jensen MH (1997) Hydroponics worldwide. Acta Hortic 481:719–730

    Google Scholar 

  • Jones JB (2005) Hydroponics: a practical guide for the soilless grower, 2nd edn. CRC Press, Boca Raton, pp 1–440

    Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands – background and principles including a framework for decision-making. Saarijärven Offset Oy, Saarijärven, pp 1–304

    Google Scholar 

  • Kläring HP, Zude M (2009) Sensing of tomato plant response to hypoxia in the root environment. Sci Hortic 122(1):17–25

    Article  CAS  Google Scholar 

  • Konstantopoulou E, Kapotis G, Salachas G, Petropoulos SA, Karapanos IC, Passam HC (2010) Nutritional quality of greenhouse lettuce at harvest and after storage in relation to N application and cultivation season. Sci. Hortic. 125(2):93.e1–93.e5

    Article  CAS  Google Scholar 

  • Krauss S, Graßmann J, Woitke M, Schnitzler WH (2007) The influence of elevated EC-levels in the nutrient solution on post harvest quality of tomatoes. Acta Hortic 741:189–197

    Article  CAS  Google Scholar 

  • Krohn N, Missio R, Ortolan LM, Burin A, Steinmacher AD, Lopes CM (2003) Nitrate level in lettuce leaves in function of the harvest time and leaf type sampling. Hortic Bras 21(2):216–219

    Article  Google Scholar 

  • Läuchli A, Epstein E (1990) Plant response to saline and sodic conditions. In: Tanji KK (ed) Agricultural salinity assessment and management. American Society of Civil Engineers Manuals and Reports on Engineering Practice, ASCE, New York, pp 113–137

    Google Scholar 

  • Lazzarin R, Enzo M, Pimpini F (2001) Principali sistemi di coltivazione fuori suolo. In: Enzo M, Gianquinto G, Lazzarin R, Pimpini F, Sambo P (eds) Principi Tecnico-Agronomici della Fertirrigazione e del Fuori Suolo. Tipografia-Garbin, Legnaro, pp 160–181

    Google Scholar 

  • Le Bot J, Adamowicz S, Robin P (1998) Modelling plant nutrition of horticultural crops: a review. Sci Hortic 74(1):47–82

    Article  CAS  Google Scholar 

  • Le Bot J, Jeannequin B, Fabre R (2001) Growth and nitrogen status of soilless tomato plants following nitrate withdrawal from the nutrient solution. Ann Bot 88(3):361–370

    Article  CAS  Google Scholar 

  • Lewis OAM (1992) Plants and nitrogen. Cambridge University Press, Cambridge, pp 1–112

    Google Scholar 

  • Liao H, Rubio G, Yan X, Cao A, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232(1-2):69–79

    Article  CAS  PubMed  Google Scholar 

  • Lieth JH, Oki LO (2008) Irrigation in soilless production. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier B.V, Amsterdam, pp 117–156

    Chapter  Google Scholar 

  • Lim ES (1985) Development of an NFT system of soilless culture for the tropics. Pertanika 8(1):135–144

    Google Scholar 

  • Luna MC, Tudela JA, Martínez-Sánchez A, Allende A, Marín A, Gil MI (2012) Long-term deficit and excess of irrigation influences quality and browning related enzymes and phenolic metabolism of fresh-cut iceberg lettuce (Lactuca sativa L.). Postharvest Biol Technol 73:37–45

    Article  CAS  Google Scholar 

  • Lundberg JO, Weitzberg E, Cole JA, Benjamin N (2004) Nitrate, bacteria and human health. Nat Rev Microbiol 2(7):593–602

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist J, de Fraiture C, Molden D (2008) Saving water: from field to fork – curbing losses and wastage in the food chain. SIWI policy brief. SIWI, Litografia, pp 1–36

    Google Scholar 

  • Malorgio F (2004) Le colture fuori suolo per le produzioni floricole di serra. Quaderno Arsia 5:49–58

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York, pp 379–396

    Google Scholar 

  • Massa D, Incrocci L, Maggini R, Bibbiani C, Carmassi G, Malorgio F, Pardossi A (2011) Simulation of crop water and mineral relations in greenhouse soilless culture. Environ Model Softw 26(6):711–722

    Article  Google Scholar 

  • Maynard DN, Barker AV (1979) Regulation of nitrate accumulation in vegetables. Acta Hortic 93:153–162

    Article  Google Scholar 

  • Meloni DA, Gulotta MR, Martínez CA, Oliva MA (2004) The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz J Plant Physiol 16(1):39–46

    Article  CAS  Google Scholar 

  • Menzies JG, Ehret DL, Glass AD, Helmer M, Koch T, Seywerd F (1991) Effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginea on Cucumis sativum. Phytopathology 81(1):84–88

    Article  Google Scholar 

  • Montesano F, Santamaria P, Serio F, Signore A (2007) La subirrigazione delle colture in contenitore. In: Santamaria P (ed) I Sistemi di Allevamento in Vaso con Subirrigazione a Ciclo Chiuso. Aracne Editrice, Rome, pp 15–28

    Google Scholar 

  • Morard P, Silvestre J (1996) Plant injury due to oxygen deficiency in the root environment of soilless cultures: a review. Plant Soil 184(2):243–254

    Article  CAS  Google Scholar 

  • Morard P, Lacoste L, Silvestre J (2000) Effect of oxygen deficiency on uptake of water and mineral nutrients by tomato plants in soilless culture. J Plant Nutr 23(8):1063–1078

    Article  CAS  Google Scholar 

  • Nellemann C, MacDevette M, Manders T, Eickhout B, Svihus B, Prins AG, Kaltenborn BP (2009) The environmental food crisis – the environment’s role in averting future food crises – A UNEP rapid response assessment, United Nations Environment Programme, GRID-Arendal. Birkeland Trykkeri AS, Norway, pp 1–104

    Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44(3):806–811

    Article  Google Scholar 

  • Nicola S, Fontana E (2007) Cultivation management on the farm influences postharvest quality and safety. Acta Hortic 746:273–280

    Article  Google Scholar 

  • Nicola S, Hoeberechts J, Fontana E (2002) Rocket (Eruca sativa Mill.) and corn salad (Valerianella olitoria L.): production and shelf-life of two leafy vegetables grown in a soilless culture system. Acta Hortic 633:509–516

    Google Scholar 

  • Nicola S, Hoeberechts J, Fontana E (2005) Comparison between traditional and soilless culture systems to produce rocket (Eruca sativa) with low nitrate content. Acta Hortic 697:549–555

    Article  CAS  Google Scholar 

  • Nicola S, Hoeberechts J, Fontana E (2007) Ebb-and-flow and floating systems to grow leafy vegetables: a review for rocket, corn salad, garden cress and purslane. Acta Hortic 747:585–592

    Article  Google Scholar 

  • Nicola S, Fontana E, Tibaldi G, Zhan L (2010) Qualitative and physiological response of minimally processed rocket (Eruca sativa Mill.) to package filling amount and shelf-life temperature. Acta Hortic 877:611–618

    Article  CAS  Google Scholar 

  • Nicola S, Egea-Gilabert C, Niñirola D, Conesa E, Pignata G, Fontana E, Fernández JA (2015) Nitrogen and aeration levels of the nutrient solution in soilless cultivation systems as important growing conditions affecting inherent quality of baby leaf vegetables: a review. Acta Hortic 1099:167–177

    Article  Google Scholar 

  • Nicola S, Pignata G, Casale M, Lo Turco PE, Gaino W (2016) Overview of a lab-scale pilot plant for studying baby leaf vegetables grown in soilless culture. Hortic J 85(2):97–104

    Article  Google Scholar 

  • Nkansah GO, Ito T (1995) Comparison of mineral absorption and nutrient composition of heat-tolerant and non heat-tolerant tomato plants at different root-zone temperatures. J Hortic Sci 70(3):453–460

    Article  Google Scholar 

  • Olympios CM (1999) Overview of soilless culture: advantages, constraints and perspectives for its use in Mediterranean countries. Cahiers Options Méditerranéennes 31:307–324

    Google Scholar 

  • Pannala AS, Mani AR, Spencer JPE, Skinner V, Bruckdorfer KR, Moore KP, Rice-Evans CA (2003) The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radic Biol Med 34(5):576–584

    Article  CAS  PubMed  Google Scholar 

  • Pardossi A (2003) El manejo de la nutrición mineral en los cultivos sin suelo. In: Fernández M, Lorenzo P, Cuadrado IM (eds) Mejora de la Eficiencia del Uso del Agua en Cultivos Protegidos, Dirección General de Investigación y Formación Agraria, Hortimed, FIAPA, Spain, pp 109–129

    Google Scholar 

  • Pardossi A, Bagnoli G, Malorgio F, Campiotti CA, Tognoni F (1999) NaCl effects on celery (Apium graveolens L.) grown in NFT. Sci Hortic 81(3):229–242

    Google Scholar 

  • Pardossi A, Incrocci L, Marzialetti P, Bibbiani C (2009) I substrati e la coltivazione delle piante in contenitore. Fertilitas Agrorum 3(1):22–31

    Google Scholar 

  • Peet MM, Willits DH (1995) Role of excess water in tomato fruit cracking. Hortscience 30(1):65–68

    Google Scholar 

  • Penningsfeld F, Kurzmann P (1983) Cultivos Hidropónicos y en Turba. Mundi-Prensa, Madrid, pp 1–339

    Google Scholar 

  • Pignata G (2015) Water and nutrient use efficiency in greenhouse systems and its application in horticulture in arid zones. In: Dendena B, Grassi S (eds) Food production: have we come to a turning point? Collana Utopie, Fondazione Giangiacomo Feltrinelli

    Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27(12):595–607

    Article  CAS  Google Scholar 

  • Proietti S, Moscatello S, Leccese A, Colla G, Battistelli A (2004) The effect of growing spinach (Spinacia oleracea L.) at two light intensities on the amounts of oxalate, ascorbate and nitrate in their leaves. J Hortic Sci Biotechnol 79(4):606–609

    Article  CAS  Google Scholar 

  • Raviv M, Wallach R, Silber A, Bar-Tal A (2002) Substrates and their analysis. In: Savvas D, Passam H (eds) Hydroponic production of vegetables and ornamentals. Embryo Publications, Athens, pp 25–102

    Google Scholar 

  • Raviv M, Lieth JH, Ba-Tal A, Silber A (2008) Growing plants in soilless culture: operational conclusions. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier B.V, Amsterdam, pp 545–571

    Chapter  Google Scholar 

  • Rea E, De Lucia B, Ventrelli A, Pierandrei F, Rinaldi S, Salerno A, Vecchietti L, Ventrelli V (2009) Substrati alternativi a base di compost per l’allevamento in contenitore di specie ornamentali mediterranee. Fertilitas Agrorum 3(1):64–73

    Google Scholar 

  • Regulation (EU) No 1258/2011 (2011) Commission Regulation (EU) No 1258/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs (Text with EEA relevance). Off J Eur Union L320, 15–17

    Google Scholar 

  • Riens B, Heldt HW (1992) Decrease of nitrate reductase activity in spinach leaves during a light-dark transition. Plant Physiol 98(2):573–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez HG, Roberts JKM, Jordan WR, Drew MC (1997) Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiol 113(3):881–893

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Hidalgo S, Artés-Hernández F, Gómez PA, Fernández JA, Artés F (2010) Quality of fresh-cut baby spinach grown under a floating trays system as affected by nitrogen fertilisation and innovative packaging treatments. J Sci Food Agric 90(6):1089–1097

    PubMed  Google Scholar 

  • Rosegrant MW, Ringler C, Zhu T (2009) Water for agriculture: maintaining food security under growing scarcity. Annu Rev Environ Resour 34(1):205–222

    Article  Google Scholar 

  • Rouphael Y, Colla G, Battistelli A, Moscatello S, Proietti S, Rea E (2004) Yield, water requirement, nutrient uptake and fruit quality of zucchini squash grown in soil and closed soilless culture. J Hortic Sci Biotechnol 79(3):423–430

    Article  CAS  Google Scholar 

  • Rouphael Y, Colla G, Cardarelli M, Fanasca S, Salerno A, Rivera CM, Rea E, Karam F (2005) Water use efficiency of greenhouse summer squash in relation to the method of culture: soil vs. soilless. Acta Hortic 697:81–86

    Article  CAS  Google Scholar 

  • Rouphael Y, Cardarelli M, Rea E, Battistelli A, Colla G (2006) Comparison of the subirrigation and drip-irrigation systems for greenhouse zucchini squash production using saline and non-saline nutrient solutions. Agric Water Manag 82(1):99–117

    Article  Google Scholar 

  • Sambo P, Pimpini F (2001) Assorbimento di nutrienti. In: Enzo M, Gianquinto G, Lazzarin R, Pimpini F, Sambo P (eds) Principi Tecnico-Agronomici della Fertirrigazione e del Fuori Suolo. Tipografia-Garbin, Bologna, pp 92–103

    Google Scholar 

  • Santamaria P, Elia A (1997) Producing nitrate-free endive heads: effect of nitrogen form on growth, yield, and ion composition of endive. J Am Soc Hortic Sci 122(1):140–145

    Google Scholar 

  • Santamaria P, Signore A (2004) La concentrazione delle asportazioni come criterio per il controllo della nutrizione minerale in ciclo chiuso: applicazione su pomodoro ‘Naomi’. In: Farina E (ed) Innovazione Tecnologica per i Sistemi Fuori Suolo. Gestione Irrigua, Nutrizionale e Bio-Disinfezione per il Fuori Suolo, Ace International, Italy, pp. 33–41

    Google Scholar 

  • Santamaria P, Valenzano V (2001) La qualità degli ortaggi allevati senza suolo. Italus Hortus 8(6):31–38

    Google Scholar 

  • Santamaria P, Elia A, Serio F, Gonnella M, Parente A (1999) Comparison between nitrate and ammonium nutrition in fennel, celery, and Swiss chard. J Plant Nutr 22(7):1091–1106

    Article  CAS  Google Scholar 

  • Sardare MMD, Admane MSV (2013) A review on plant without soil-hydroponics. Int J Res Eng Technol 2(3):299–304

    Article  Google Scholar 

  • Savvas D (2001) Nutritional management of vegetables and ornamental plants in hydroponics. In: Dris R, Niskanen R, Jain SM (eds) Crop management and postharvest handling of horticultural products, Quality Management, vol 1. Science Publishers, Enfield, pp 37–87

    Google Scholar 

  • Savvas D, Stamati E, Tsirogiannis IL, Mantzos N, Barouchas PE, Katsoulas N, Kittas C (2007) Interactions between salinity and irrigation frequency in greenhouse pepper grown in closed-cycle hydroponic systems. Agric Water Manag 91(1):102–111

    Article  Google Scholar 

  • Savvas D, Gianquinto G, Tuzel Y, Gruda N (2013) Soilless culture. In: Baudoin W et al (eds) Good agricultural practices for greenhouse vegetable crops: principles for mediterranean climate areas. FAO, Rome, pp 303–354

    Google Scholar 

  • Schnitzler WH, Sharma AK, Gruda NS, Heuberger HT (2004) A low-tech hydroponic system for bell pepper (Capsicum Annuum L.) production. Acta Hortic 644:47–53

    Article  Google Scholar 

  • Scuderi D, Restuccia C, Chisari M, Barbagallo RN, Caggia C, Giuffrida F (2011) Salinity of nutrient solution influences the shelf-life of fresh-cut lettuce grown in floating system. Postharvest Biol Technol 59(2):132–137

    Article  CAS  Google Scholar 

  • Selma MV, Luna MC, Martínez-Sánchez A, Tudela JA, Beltrán D, Baixauli C, Gil MI (2012) Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biol Technol 63(1):16–24

    Article  CAS  Google Scholar 

  • Sengupta A, Banerjee H (2012) Soil-less culture in modern agriculture. World J Sci Technol 2(7):103–108

    Google Scholar 

  • Sequi P, Rea E, Trinchera A (2009) Aspetti legislativi per la normazione dei substrati di coltivazione. Fertilitas Agrorum 3(1):36–42

    Google Scholar 

  • Siddiqi MY, Kronzucker HJ, Britto DT, Glass ADM (1998) Growth of a tomato crop at reduced nutrient concentrations as a strategy to limit eutrophication. J Plant Nutr 21(9):1879–1895

    Article  CAS  Google Scholar 

  • Silber A, Bar-Tal A (2008) Nutrition of substrate-grown plants. In: Raviv M, Lieth JH (eds) Soilless culture theory and practice. Elsevier B.V, Amsterdam, pp 291–339

    Chapter  Google Scholar 

  • Silberbush M, Ben-Asher J (2001) Simulation study of nutrient uptake by plants from soilless cultures as affected by salinity buildup and transpiration. Plant Soil 233(1):59–69

    Article  CAS  Google Scholar 

  • Silberbush M, Ben-Asher J, Ephrath JE (2005) A model for nutrient and water flow and their uptake by plants grown in a soilless culture. Plant Soil 271(1–2):309–319

    Article  CAS  Google Scholar 

  • Siomos SA, Papadopoulou PP, Dogras CC, Vasiliadis E, Docas A, Georgiou N (2002) Lettuce composition as affected by genotype and leaf position. Acta Hortic 579:635–639

    Article  Google Scholar 

  • Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A (2014) Small-scale aquaponic food production – integrated fish and plant farming. FAO, Rome, pp 1–262

    Google Scholar 

  • Son JE, Oh MM, Lu YJ, Kim KS, Giacomelli GA (2006) Nutrient-flow wick culture system for potted plant production: system characteristics and plant growth. Sci Hortic 107(4):392–398

    Article  Google Scholar 

  • Sonneveld C (2002) Composition of nutrient solutions. In: Savvas D, Passam H (eds) Hydroponic production of vegetables and ornamentals. Embryo Publications, Athens, pp 179–210

    Google Scholar 

  • Sonneveld C, Voogt W (2009) Plant nutrition of greenhouse crops. Springer, Dordrecht, pp 1–431

    Book  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland, pp 1–690

    Google Scholar 

  • Tei F, Benincasa P, Guiducci M (2000) Effect of nitrogen availability on growth and nitrogen uptake in lettuce. Acta Hortic 533:385–392

    Article  Google Scholar 

  • Thompson RB, Gallardo M, Giménez C (2002) Assessing risk of nitrate leaching from the horticultural industry of Almería. Spain Acta Hortic 571:243–248

    Article  Google Scholar 

  • Tognoni F, Malorgio F, Incrocci L, Carmassi G, Massa D, Pardossi A (2005) Tecniche idroponiche per colture in serra. In: VV AA (eds) Proceedings of Congresso Nazionale Strategie per il Miglioramento dell’Orticoltura Protetta in Sicilia, Scoglitti (RG), Italy, 25–26 November 2005, pp 39–51

    Google Scholar 

  • Tomasi N, Pinton R, Dalla CL, Cortella G, Terzano R, Mimmo T, Scampicchio M, Cesco S (2015) New ‘solutions’ for floating cultivation system of ready-to-eat salad: a review. Trends Food Sci Technol 46(2):267–276

    Article  CAS  Google Scholar 

  • Urrestarazu M (2004) La disolución de fertirrigación. In: Urrestarazu M (ed) Tratado de Cultivo Sin Suelo. Mundi-Prensa, Madrid, pp 263–303

    Google Scholar 

  • Urrestarazu M, Mazuela PC, Boukhalfa A, Arán A, Salas MDC (2005) Oxygen content and its diurnal variation in a new recirculanting water soilless culture for horticultural crops. Hortscience 40(6):1729–1730

    Google Scholar 

  • Urrestarazu M, Salas MDC, Valera D, Gómez A, Mazuela PC (2008) Effects of heating nutrient solution on water and mineral uptake and early yield of two cucurbits under soilless culture. J Plant Nutr 31(3):527–538

    Article  CAS  Google Scholar 

  • Van Os EA (1999) Closed soilless growing system: a sustainable solution for Dutch greenhouse horticulture. Water Sci Technol 39(5):105–112

    Article  Google Scholar 

  • Vavrina CS, Hochmuth GJ (1996) Seasonal differences occur in transplant too. Am Veg Grow 24:29–31

    Google Scholar 

  • Wolosin RT (2008) El milagro de Almería, España: a political ecology of landscape change and greenhouse agriculture. Thesis, The University of Montana, MT, USA, pp 1–100

    Google Scholar 

  • www.hortiplan.com/en/mgs, (Accessed 15 November 2016a)

  • www.ngsystem.com/en, (Accessed 15 November 2016b)

  • Ysart G, Clifford R, Harrison N (1999) Monitoring for nitrate in UK grown lettuce and spinach. Food Addit Contam 16(7):301–306

    Article  CAS  PubMed  Google Scholar 

  • Zaccheo P, Crippa L, Orfeo D (2009) Valorizzazione dei substrati di coltivazione nazionali mediante adozione di protocolli aziendali. Fertilitas Agrorum 3(1):43–49

    Google Scholar 

  • Zanin G, Ponchia G, Sambo P (2009) Yield and quality of vegetables grown in a floating system for ready-to-eat produce. Acta Hortic 807:433–438

    Article  Google Scholar 

  • Zekki H, Gauthier L, Gosselin A (1996) Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with or without nutrient solution recycling. J Am Soc Hortic Sci 121(6):1082–1088

    Google Scholar 

  • Zhan LJ, Fontana E, Tibaldi G, Nicola S (2009) Qualitative and physiological response of minimally processed garden cress (Lepidium sativum L.) to harvest handling and storage conditions. J Food Agric Environ 7:43–50

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Nicola .

Editor information

Editors and Affiliations

Glossary

DFT

Deep flow technique

EC

Electrical conductivity

EF

Ebb-and-flow flotation

FGS

Floating growing systems

FL

Continuous flotation

GFT

Gravel film technique

HNS

Hydroponic nutrient solution

MGS

Mobile gully system

NFT

Nutrient film technique

NGS

New growing system

N-NH4 +

N in ammoniacal form

N-NO3

N in nitric form

SCS

Soilless culture systems

TCS

Traditional culture systems

UV

Ultraviolet

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pignata, G., Casale, M., Nicola, S. (2017). Water and Nutrient Supply in Horticultural Crops Grown in Soilless Culture: Resource Efficiency in Dynamic and Intensive Systems. In: Tei, F., Nicola, S., Benincasa, P. (eds) Advances in Research on Fertilization Management of Vegetable Crops . Advances in Olericulture. Springer, Cham. https://doi.org/10.1007/978-3-319-53626-2_7

Download citation

Publish with us

Policies and ethics