Skip to main content

Effect of Casting Variables on Mould Flux Performance

  • Chapter
  • First Online:
  • 1223 Accesses

Abstract

Continuous casting is a complex process affected by a number of factors and it is necessary to optimise these factors (e.g. shell lubrication and heat extraction) to minimise product defects and process problems. The mould powder is expected to alleviate these problems. However, the casting conditions have a pronounced effect on factors like slag infiltration and heat transfer and this requires careful selection of mould slag properties to provide optimum casting conditions. The effect of individual, casting variables (e.g., casting speed) on the casting process is discussed in this chapter and the following casting variables are examined and discussed: (i) mould characteristics (e.g., dimensions, taper, coatings) (ii) oscillation characteristics (iii) casting speed (iv) metal flow characteristics (v) metal-level variations (vi) fluctuations (in metal flow, mould level, etc. (vii) the application of electromagnetic devices (viii) steel grade being cast (ix) water flow rate. The effects of these individual factors are discussed and how the mould powder can be used to optimise the casting process.

This is a preview of subscription content, log in via an institution.

Abbreviations

d s :

Thickness of solid slag layer (m)

d s :

Thickness of liquid slag layer (m)

f :

Frequency (cpm or Hz)

f crys :

Fraction crystalline phase

Q s :

Powder consumption (kg m−2)

q :

Heat flux density (Wm−2)

R* :

Mould (surface area/volume) (m−1)

s :

Stroke length (m)

T :

Temperature (°C)

Tbr = Tsol:

Break, Solidification temperature

t :

Time (s) or thickness of mould (m)

t n :

Negative strip time (s)

V C :

Casting speed (m min−1 or ms−1)

V m :

Velocity of mould (ms−1)

w :

Width (m)

η :

Slag viscosity (dPas)

EMBr:

Electromagnetic braking

EMC:

Electromagnetic casting

EMS:

Electromagnetic stirring

HC:

High-carbon steel

LMF:

Level magnetic field

MC:

Medium carbon steel

References

  1. S Ogibayashi, T Mizoguchi, T Kajatani, Intl. Workshop on Thermophys. Data for the Development of Mathematical models of solidification, Gifu City, Japan, (1995).

    Google Scholar 

  2. AB Fox, PhD Thesis “Mould fluxes- their properties and performance” Imperial College, London, (2003).

    Google Scholar 

  3. F Neumann, J Neal, MA Pedroza, AH Castiliejos, E FA Acosta G, Proc.. 79th Steelmaking Conf., 1996, (ISS, Warrendale, PA, 1996) p. 249.

    Google Scholar 

  4. KC Mills, S Sridhar, AS Normanton, ST Mallaband, Proc. Brimacombe Conf., Vancouver, 2000, (Can. Inst. Min. Met. & Petrol., 2000), p. 781.

    Google Scholar 

  5. S Sridhar, KC Mills, V Ludlow, ST Mallaband, Proc. 3rd Europ. Conf. Continuous Casting, Madrid, 1998, (UNESID, Madrid,1998) p. 807.

    Google Scholar 

  6. T Matsumiya, ISIJ Intl., 46, 1800, (2006).

    Google Scholar 

  7. MM Wolf, Iron and Steelmaker, 23, (2), 47, (1996).

    Google Scholar 

  8. CS Li, BG Thomas, Proc. ISS Tech Conf., Indianapolis, 2003, (ISS, Warrendale, PA, 2003) p. 685, see also Met. Mater. Trans., 35B, 1151, (2004).

    Google Scholar 

  9. M. Wolf, Proc. 2nd Europ. Conf. Continuous Casting, Dusseldorf, 1994, METEC Congress’94, (VDEh, Dusseldorf, 1994) vol. 1 p. 78,

    Google Scholar 

  10. KC Mills, AB Fox, ISIJ Intl., 43, 1479, (2003).

    Google Scholar 

  11. S Ogibayashi, K Yamaguchi, T Mukai, T Takahashi, Y Mimura, K Koyama, Y Nagano, T Nagano, Nippon Steel Technical Report, 34, 1, (1987).

    Google Scholar 

  12. RJ O’Malley, J Neal, Proc. Intl. Conf. on New Developments in Metallurgical Process Technol., Dusseldorf, METEC Congress (VDEh, Dusseldorf, 1999) p. 73.

    Google Scholar 

  13. PE Ramirez-Lopez, PD Lee, KC Mills, B Santillana, ISIJ Intl., 50, 1797, (2010).

    Google Scholar 

  14. H Tai, M Morashita, T Miyake, Proc 3rd Conf. Continuous Casting, Madrid, 1998, (UNESID, Madrid, 1998) p. 447 see also T Miyake, K Nakayama, M Moroshita and H Tai, Kobelco Technol. Review, 21, (April), 7, (1998).

    Google Scholar 

  15. ES Szerkeres, Iron and Steel Engineer, 73, (7), 29, (1997).

    Google Scholar 

  16. PE Ramirez-Lopez, KC Mills, PD Lee, B Santillana, Met. Mater. Trans., 66, 109, (2011).

    Google Scholar 

  17. PE Ramirez-Lopez, KC Mills, PD Lee, B Santillana, ISIJ Intl., 50, 425, (2010).

    Google Scholar 

  18. P E. Ramirez-Lopez, P D. Lee, KC. Mills, C Puncreobutr, D Farrugia, B Santillana, U, Sjöström, Proc 7th Europ. Conf Continuous Casting, Dusseldorf, (2012) (VDEh, Dusseldorf).

    Google Scholar 

  19. Y Meng, BG Thomas, Proc. ISS Technol., Indianapolis, (2003) p. 589 see also Met. Mater. Trans., 34B, 685, (2003).

    Google Scholar 

  20. K Schwerdtfeger, KH Tacke, Report EUR 9339 (Europ. Comm. Sci. Tech. Publ., Luxembourg, 1985).

    Google Scholar 

  21. S Ogibayashi, CAMP-ISIJ, 18, 126, (2003) and Proc. 75th Steelmaking Conf. (2002) p. 175.

    Google Scholar 

  22. JM Hill, YH Wu, B Witwatanapataphee, J Eng. Math., 36, 311, (1999).

    Google Scholar 

  23. R Saraswat, AB Fox, KC Mills, PD Lee, B Deo, Scand. J Metal., 33, 85, (2004).

    Google Scholar 

  24. H Maeda, CAMP-ISIJ, 6, 280, (1993).

    Google Scholar 

  25. PE Ramirez- Lopez, J Bjorkvall, U Sjostrom, PN Jalali, PD Lee, KC Mills, B Jonsson, J Janis, M Petajajarvi, J Pirinen: Proc. 9th Intl Conf. on CFD on Minerals and Process Industries, CSIRO, Melbourne, 2012. paper available www.cfd.com.au/cfd_conf12.

  26. CA Dacker, T Sohlgren, Steel Research Intl., 81, 899, (2010).

    Google Scholar 

  27. BG Thomas, B Ho, G Li, Proc. McLean Symp., Toronto, 1998 (ISS, Warrendale, PA, 1998) p. 177.

    Google Scholar 

  28. JA Kromhout, C Liebske, S Meltzer, AA Kamperman, R Boom, Ironmaking and Steelmaking, 36, 291, (2009).

    Google Scholar 

  29. J Kromhout, RS Schimmel, Proc 8th Europ. Conf Continuous casting, Graz, 2014 (Austrian Met. Mater. Soc., 2014).

    Google Scholar 

  30. Y Liu, XD Wang, M Yao, AB Zhang, H Ma, Z Wang, JC Ma, X Wang, GQ Shi, Ironmaking and Steelmaking, 41, 748, (2014).

    Google Scholar 

  31. M Jenkins, Proc. 77th Steelmaking Conf., (1994), (ISS, Warrendale, PA, 1994) p. 337.

    Google Scholar 

  32. M S Jenkins, BG Thomas, Proc. 80th Steelmaking Conf. (1997) (ISS, Warrendale, PA, 1995) p. 285.

    Google Scholar 

  33. JW Kim, SK. Kim, D. S. Kim, Y. D. Lee, J. I. Eum, E. S. Lee, Proc. 78th Steelmaking Conf. (ISS, Warrendale, PA, 1995) p. 333.

    Google Scholar 

  34. S Chakraborty, W Hill, Proc. 77th Steelmaking Conf., 1994, (ISS, Warrendale, PA, 1994) p. 389.

    Google Scholar 

  35. K Miyazawa, Sci. & Technol. Advanced Materials, 2, 59, (2001).

    Google Scholar 

  36. T Teshima, J Kubota, M Suzuki, K Ozawa, T Masoka, S Miyahara, Tetsu-to- Hagane, 79 (5), 576, (1993).

    Google Scholar 

  37. R Aigner, H Steinruck, EUROTHERM 82, Numerical Heat Transfer Gliwice-Cracow, Poland, 2005, ed. A Nowak, RA Bialecki: (Silesian Univ. Technol.) p. 1076.

    Google Scholar 

  38. G.G. Lee, H. Shin, S.-H. Kim, S.-K. Kim, W.-Y. Choi, B.G. Thomas, Ironmaking and Steelmaking, 36, (1), 40, (2009).

    Google Scholar 

  39. V Guyot, JF Martin, A Ruelle, A d’Anselme, JP Radot, M Bobadilla, JV Lavant, JN Pontoire, ISIJ Intl., 36, S 227, (1996).

    Google Scholar 

  40. H Takeuchi, H Mori, T Nishida, T Yanai, K Mukunashi, Trans. ISIJ, 19, 274, (1979).

    Google Scholar 

  41. J Kromhout, PhD Thesis, “Mould powders for high speed continuous casting of steel” University of Delft, NL, (2011).

    Google Scholar 

  42. M Cervantes, H Gustavsson, Proc. 3rd Europ Conf. Continuous casting, Madrid, 1998, (UNESID, Madrid, 1998) p. 202.

    Google Scholar 

  43. M Washio, M Sugizawa, S Moriwaki, K Kariya, S Idogawa, S Takeuchi, Revue de Metallurgie, CIT, 90, (April), 507, (1993).

    Google Scholar 

  44. H Take, H Osanai, J Hasunuma, T Yamamoto, H Bada, H Tozawa, Proc. Conf. “Quality of ordinary steel in Iron- and steel-making”, Bangkok, (1994) Session 3, Paper 1.

    Google Scholar 

  45. D W van der Plas, C Platvoet, B Diesesme, JP Radot, JM Galpin, Proc. 2nd Europ. Conf. Continuous casting, Dusseldorf, 1994, Metec Congress’94 (VDEh, Dusseldorf, 1994) p. 109.

    Google Scholar 

  46. R Singh, BG Thomas, SP Vanka, Met. Mater. Trans. B, 44 B, 1201, (2013).

    Google Scholar 

  47. M Morishita, CAMP- ISIJ, 20, 867, (2007).

    Google Scholar 

  48. D Gotthelf, P Andrezjewski, E Julius, H Haubrich, Proc. 3rd Europ. Conf. Continuous Casting, Madrid, 1998, (UNESID, Madrid, 1998) vol. 2 p. 825.

    Google Scholar 

  49. BG Thomas, LF Zhang, ISIJ Intl., 41, 1181, (2001).

    Google Scholar 

  50. QK Robinson, DM Gerstl, Proc. 3rd Europ. Conf. Continuous Casting, Madrid, 1998, (UNESID, Madrid, (1998) p. 1050.

    Google Scholar 

  51. PE Ramirez- Lopez, PN Jalali, J Bjorkvall, U Sjostrom, C Nilsson, ISIJ Intl. 54, 342. (2014) and Proc. 8th Europ. Conf. Continuous Casting, Graz, Austria, 2014 (ASMET, 2014).

    Google Scholar 

  52. E van Vliet, DW van der Plas, SP Carless, A A Kamperman, AE Westendorp, Proc.. 7th Europ. Conf. Cont. Casting, Dusseldorf, (2011), Session 4.

    Google Scholar 

  53. R Choudhary, BG Thomas, SP Vanka, Met. Mater. Trans. B, 43B, 532, (2012).

    Google Scholar 

  54. S Yokoya, S Tagaki, M Iguchi, K Marukawa, S Hata, Proc. 4th Europ. Continuous casting Conf., Birmingham, 2002 (IOM, London, 2002) vol 1, p. 149.

    Google Scholar 

  55. C Real, R Miranda, G Vulchis, M Barron, L Hoyes, J Gonzalez, ISIJ Intl. 46, 1183, (2006).

    Google Scholar 

  56. A Ramos-Banderas, R Sánchez-Pérez, RD Morales, J Palafox-Ramos, L Demedices-García, M Díaz-Cruz, Met.. Mater. Trans. B, 35B, 449, (2004).

    Google Scholar 

  57. PE Ramirez-Lopez, PD Lee, KC Mills, ISIJ Intl., 50, 425, (2010).

    Google Scholar 

  58. E Torres-Alonso, RD Morales, S Garcia-Hernandez, A Najera- Bastida, A Sandoval- Ramos, Met. Mater. Trans. B, 39B, 840, (2008).

    Google Scholar 

  59. PD Lee, PE Ramirez-Lopez, KC Mills, B Santillana, Ironmaking and Steelmaking, 39, 244, (2012).

    Google Scholar 

  60. KC Mills, PE Ramirez-Lopez, PD Lee, High Temp. Materials & Processes, 31, 221, (2012).

    Google Scholar 

  61. H Nakato et al, Continuous Casting, vol 6, (ISS, Warrendale, PA, 1992) p. 193.

    Google Scholar 

  62. S Feldbauer, I Jimbo, A Sharan, K Shimizu, W King, J Stepanek, J Harman, AW Cramb, Proc. 78th Steelmaking Conf., 1995, (ISS, Warrendale, PA, 1995) p. 655.

    Google Scholar 

  63. E Takeuchi, JOM, 1995 (May), 42, (1995).

    Google Scholar 

  64. E Takeuchi, H Harada, H Tanaka, T Ishii, T Toh, M Zeze, M Hojo, K Shigematsu, Nippon Steel Technical Report, 61, 29, (1994).

    Google Scholar 

  65. E Favre, S Kunstreich, MC Nove, D Rotelec, W Courths, E Korte, Proc. 3rd Intl Conf. Continuous Casting, Madrid, 1998, (UNESID, Madrid, 1998) p. 595.

    Google Scholar 

  66. P Gardin, JM Galpin, MC Regnier, JP Radot, IEEE Trans. on Magnetics, 31, 2088, (1995).

    Google Scholar 

  67. M Tani, T Toh, K Umetsu, K Tanaka, M Zeze, K Tsunenari, K Hayashi, S Fukunaga, Nippon Steel Technical Report, 104, 62, (2013).

    Google Scholar 

  68. SG Kollberg, HR Hackl, PJ Hanley, Iron and Steel Engineer, 73, (7), 24, (1996).

    Google Scholar 

  69. G Bocher, U Hoffman, P Muller, Proc. 2nd Europ. Conf. Continuous casting, Dusseldorf, 1994, Metec Congress’94 (VDEh, Dusseldorf, 1994) p. 103.

    Google Scholar 

  70. TWJ Peeters, R Koldwijn, JA Kromhout, AA Kampermann, Proc. 5th Conf Continuous Casting, Nice, 2005, (La Revue Metall., Paris, 2005) Vol 2, p. 515.

    Google Scholar 

  71. MY Ha, SG Lee, SH Seong, J. Mater. Processing Technol., 133, 322, (2003).

    Google Scholar 

  72. R Koldewijn, Unpublished Corus Internal Rept. (2007) cited in KC Mills, J Kromhout, A Hamoen, R Boom, Proc. Admet Conf., Dnipetrovsk, Ukraine, May 2007, (Natl. Metall. Acad. Ukr., Dnipropetrovsk, 2007) vol 2, p. 174.

    Google Scholar 

  73. SN Singh, KE Blazek, J Metals, 26, (10), 17, (1974).

    Google Scholar 

  74. E Schmidtmann, L Pluegel, Archiv. fur Eisenhuttenw., 51, 49, (1980).

    Google Scholar 

  75. Thermocalc, www.thermocalc.com.

  76. M Wolf, W Kurz, Met. Trans., 12, 85, (1981).

    Google Scholar 

  77. M Wolf, Proc. 81st Steelmaking Conf.,1998, (ISS, Warrendale, PA, 1998) p. 53.

    Google Scholar 

  78. MB Santillana, PhD Thesis: Thermo-mechanical properties and cracking during solidification of thin slab cast steel. Univ. Delft, NL (2013) Chapter 3.

    Google Scholar 

  79. KE Blazek, O Lanzi, P Gano, D Kellog, Proc. AIST Tech. Conf., 2007, PR-351-141 – 2007.

    Google Scholar 

  80. AA Howe, PhD Thesis, Micro-segregation in multi-component steels involving the peritectic reaction, Univ. Sheffield, (1993).

    Google Scholar 

  81. G Skoczylas, Proc. 79th Steelmaking Conf., 1996, (ISS Warrendale, PA) p. 269.

    Google Scholar 

  82. MJ Lu, JH Chen, DH Tsai, CH Huang, Proc. 78th Steelmaking Conf., 1995,(ISS, Warrendale, PA) p. 359.

    Google Scholar 

  83. K Pericleous –private communication Univ. Greenwich, UK (2008).

    Google Scholar 

  84. T Mallaband (Metallurgica, UK) Unpublished results from cited by AB Fox, ref. 5–02.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C. Mills .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mills, K.C., Däcker, CÅ. (2017). Effect of Casting Variables on Mould Flux Performance. In: The Casting Powders Book. Springer, Cham. https://doi.org/10.1007/978-3-319-53616-3_5

Download citation

Publish with us

Policies and ethics