Skip to main content

Refractories and Carbon Cathode Materials for Aluminum Reduction Cells

  • Chapter
  • First Online:
Refractories for Aluminum

Abstract

This chapter describes the elements of the reduction process, the organization of reduction shops at smelters, the typical designs and constructions of reduction cells (with an emphasis on the basic heat balance of the Hall–Herault reduction process), and the preheating and startup of reduction cells. The main types of failures and shutdowns of reduction cells are described together with the principles of dry autopsies behind investigations into the reasons for shutdowns.

The main materials for the lining of reduction cells:

  • Carbon cathode blocks and carbon ramming pastes;

  • Carbon and silicon carbide side lining materials and ramming pastes, concretes, and mortars for their installation;

  • Refractory barrier layer bricks and dry barrier mixtures;

  • Heat insulation materials

are described in the following sequence:

  • The purpose of the material and its basic properties, grades of materials;

  • Raw materials for processing;

  • Installation in reduction cells;

  • Elements of technology and processing, equipment, structure of materials;

  • Typical defects of materials;

  • Behavior in reduction cells during service in connection with physical changes and chemical interactions; critical pore sizes for the penetration of electrolyte;

  • Testing and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thonstad J, Fellner P, Haarberg G, et al. Aluminium electrolysis. Fundamentals of the Hall-Heroult process. Dusseldorf: Aluminium Verlag; 2001. 359 p.

    Google Scholar 

  2. Grjothheim K, Welch BW. Aluminium smelter technology. 2nd ed. Dusseldorf: Aluminium-Verlag; 1988. 328 p.

    Google Scholar 

  3. Borisoglebsky Y, Galevsky G, Kulagin N. The metallurgy of aluminium (in Russian). Novosibirsk: Nauka; 1999. 437 p.

    Google Scholar 

  4. Sørlie M, Øye H. Cathodes in aluminium electrolysis. 3rd ed. Dusseldorf: Aluminium-Verlag; 2010. 662 p.

    Google Scholar 

  5. Martin O, Jolas JM, Benkahla B, et al. The next step to the AP3X-Hale technology: higher amperage, lower energy and economical performances. Light Met. 2006;249–54.

    Google Scholar 

  6. Martin O, Allano B, Barrioz E, et al. Low energy cell development on AP technology. Light Met. 2012;569–74.

    Google Scholar 

  7. Fengqin L, Songqing G. Review on the energy saving technologies applied in Chinese aluminum reduction industry. Light Met. 2012;575–9.

    Google Scholar 

  8. Dongfang Z, Xiaodong Y, Wei L. Development and application of SAMI’s low voltage energy-saving technology. Light Met. 2012;607–12.

    Google Scholar 

  9. Bastaki M, Zarouni A, Jonqua B, et al. DUBAL cell voltage drop initiatives towards low energy high amperage cells. Light Met. 2014;451–5.

    Google Scholar 

  10. Sørlie M, Øye H. Cathodes in aluminium electrolysis. 3rd ed. Aluminium-Verlag; 2010. 662 p.

    Google Scholar 

  11. Panov E, Diachenko S, Danilenko S, et al. Heat processes in reduction cells and holding furnaces of aluminium production (in Russian). Moscow: Ruda i Metally; 1998. 256 p.

    Google Scholar 

  12. Gromov B, Panov E, Bojenko M, et al. Pre heating and start-up of aluminium reduction cells (in Russian). Moscow: Ruda I Metally; 2001. 336 p.

    Google Scholar 

  13. Thonstad J, Fellner P, Haarberg G, et al. Aluminium electrolysis. Fundamentals of the Hall-Heroult process. Aluminium Verlag; 2001. 359 p.

    Google Scholar 

  14. Zolochevsky A, Hop JG, Foosngs T, Øye H. Rapoport-Samoilenko test for cathode carbon materials I. Experimental results and constitutive modelling. Carbon. 2003;41:497–505.

    Article  Google Scholar 

  15. Øye H. ISO standards for testing of cathode materials. Light Met. 2008;937–42.

    Google Scholar 

  16. Allard B, Dreyfus JM, Lenclud M. Evolution of thermal, electrical and mechanical properties of graphitised cathode blocks for aluminium electrolysis cells with temperature. Light Met. 2004;641–5.

    Google Scholar 

  17. Lombard D, Behergaray T, Feve B, Jolas JN. Aluminium Pe’chiney experience with graphitized carbon blocks. Light Met. 1998;653–8.

    Google Scholar 

  18. ISO 11713:2000. Carbonaceous materials used in the production of aluminium – cathode blocks and baked anodes – determination of electrical resistivity at ambient temperature.

    Google Scholar 

  19. ASTM C611-98(2010). Standard test method for electrical resistivity of manufactured carbon and graphite articles at room temperature.

    Google Scholar 

  20. Brisson P, Soucy G, Fafard G, Darmstadt H, Servant G. Revising sodium and bath penetration in the carbon lining of aluminium electrolysis cell. Light Met. 2005;727–32.

    Google Scholar 

  21. ISO/WD 15379-2. Carbonaceous materials for the production of aluminium – cathode block materials – part 2 – determination of the expansion due to the sodium penetration without application of pressure.

    Google Scholar 

  22. ISO/WD 15379-1. Carbonaceous materials for the production of aluminium – cathode block materials – part 1: determination of the expansion due to the sodium penetration with application of pressure.

    Google Scholar 

  23. ISO 18515. Carbonaceous materials for the production of aluminium – cathode blocks and baked anodes – determination of compressive strength.

    Google Scholar 

  24. DIN 51910-1997. Testing of carbon materials – determination of compressive strength.

    Google Scholar 

  25. ISO 12986-1:2000. Carbonaceous materials used in the production of aluminium – prebaked anodes and cathode blocks – part 1: determination of bending/shear strength by a three-point method.

    Google Scholar 

  26. ISO 12986-2. Carbonaceous materials used in the production of aluminium – prebaked anodes and cathode blocks – part 2: determination of flexural strength by the four-point method.

    Google Scholar 

  27. ASTM C651. Test method for flexural strength of manufactured carbon and graphite articles using four-point loading at room temperature.

    Google Scholar 

  28. DIN 51944-1999. Testing of carbonaceous materials – determination of flexural strength by four-point method – solid materials.

    Google Scholar 

  29. DIN 51902-1997. Testing of carbonaceous materials – determination of flexural strength by three-point method – solid materials.

    Google Scholar 

  30. ASTMC747. Test method for moduli of elasticity and fundamental frequencies of carbon and graphite materials by sonic resonance.

    Google Scholar 

  31. ASTM C1025. Test method for modulus of rupture in bending of electrode graphite.

    Google Scholar 

  32. DIN 51915-97. Testing of carbon materials – determination of dynamic modulus of elasticity by the resonance method – solid materials.

    Google Scholar 

  33. Panov E, Diachenko S, Danilenko S, et al. Heat processes in reduction cells and holding furnaces of aluminium production. Moscow: Ruda i Metally; 1998. 256 p.

    Google Scholar 

  34. Allard B, Roughby D, Fantozzi G, Dumas D, Lacroix P. Fracture behavior of carbon materials. Carbon. 1991;29(3):457–98.

    Article  Google Scholar 

  35. ISO 12987-2003. Carbonaceous materials for the production of aluminium – anodes, cathodes blocks, sidewall blocks and baked ramming pastes -determination of the thermal conductivity using a comparative method.

    Google Scholar 

  36. DIN 51909-1998. Testing of carbon materials – determination of coefficient of linear thermal expansion.

    Google Scholar 

  37. ISO 14420:2005. Carbonaceous products for the production of aluminium – baked anodes and shaped carbon products – determination of the coefficient of linear thermal expansion.

    Google Scholar 

  38. Borisov V, Hramenko S. Investigation of bottom materials of shut down reduction cells. Alum Sib. 1995;10:145–51.

    Google Scholar 

  39. ISO 12985-1:2000. Carbonaceous materials used in the production of aluminium – baked anodes and cathode blocks – Part 1: determination of apparent density using a dimensions method.

    Google Scholar 

  40. ISO 12985-2:2000. Carbonaceous materials used in the production of aluminium – baked anodes and cathode blocks – Part 2: determination of apparent density and of open porosity using a hydrostatic method.

    Google Scholar 

  41. DIN 51918-1999. Testing of carbonaceous materials – determination of bulk density by buoyancy method and the apparent porosity by impregnation with water.

    Google Scholar 

  42. ASTM C559. Test method for bulk density by physical measurements of manufactured carbon and graphite articles.

    Google Scholar 

  43. ASTMC1039. Test methods for apparent porosity, apparent specific gravity, and bulk density of graphite electrodes.

    Google Scholar 

  44. DIN 51913-2001. Testing of carbonaceous materials – determination of density by gas pyknometer (volumetric) using helium as a measuring gas.

    Google Scholar 

  45. ISO 9088-1997. Carbonaceous materials used for the production of aluminium – cathode blocks and prebacked anodes – determination of the density in xylene by a pyknometric method.

    Google Scholar 

  46. ISO 21687:2007. Carbonaceous materials used in the production of aluminium – determination of density by gas pyknometry (volumetric) using helium as the analysis gas – solid materials.

    Google Scholar 

  47. ISO 15906:2007. Carbonaceous materials for the production of aluminium – baked anodes – determination of the air permeability.

    Google Scholar 

  48. DIN 51903. Testing of carbon materials; determination of ash value; solid matters.

    Google Scholar 

  49. ISO 8005. Carbonaceous materials used in the production of aluminium – green and calcined coke – determination of ash content.

    Google Scholar 

  50. Wilkening S. Untersuchungen u¨ber Kathodeblo¨cke fu¨ r die Aluminum-Elektrolyse. Erzmetall. 1977;30:232.

    Google Scholar 

  51. Shi Z, Xu J, Ren B, Ban Y, Wang Z. Tests of various graphitic cathode blocks materials for 300 kA aluminium reduction cells. Light Met. 2007;849–52.

    Google Scholar 

  52. Haupin W. Cathode voltage loss in aluminum smelting cell. Light Met. 1975;339.

    Google Scholar 

  53. Dinger DR, Funk JE. Particle packing I – fundamentals of particle packing: monodisperse. Spheres Interceram. 1992;41(1):10–4.

    Google Scholar 

  54. Dinger DR, Funk JE. Particle packing II-Review of packing of polydisperse particle systems. Interceram 1992;(2):41–6.

    Google Scholar 

  55. Dinger DR, Funk JE. Particle packing III – Discrete versus continuous particle size. Interceram 1992;(5):41–6.

    Google Scholar 

  56. Dinger DR, Funk JE. Particle packing IV – computer modelling of particle packing phenomena. Interceram. 1993;42(3):150–2.

    Google Scholar 

  57. Dinger DR, Funk JE. Particle size control for high-solids castable refractories. Am Ceram Soc Bull. 1994;73(10):66–9.

    Google Scholar 

  58. Yurkov AL, Hramenko SA, Borisov VI. The influence of the structure and the properties of carbon cathode blocks on shut downs of reduction cells (in Russian). Novye Ogneup. 2008;4:3–12.

    Google Scholar 

  59. Khramenko SA, Polyakov PV, Rozin AV, Skibin AP. Effect of porosity structure on penetration and performance of lining materials. Light Met. 2005;795–804.

    Google Scholar 

  60. Yurkov AL, Hramenko SA, Mosin YM. Grain structures and the porosity variations in carbon cathode blocks for the reduction cells (in Russian). Novye Ogneup. 2010;5:26–30.

    Google Scholar 

  61. Hasselman DPH. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J Am Ceram Soc. 1969;52:600–4.

    Article  Google Scholar 

  62. Durand F, Rouby D, Fantozzi G, Allard B, Dumas D. Characterization of the high-temperature mechanical behavior of carbon materials. Carbon. 1994;32(3):857–65.

    Article  Google Scholar 

  63. Evans AG, Farber KT. Crack growth resistance of microcracking brittle materials. J Am Ceram Soc. 1984;67:255–60.

    Article  Google Scholar 

  64. Yurkov AL, Hramenko SA, Borisov VI. The influence of the structure and the properties of carbon cathode blocks in early shut downs of the reduction cells. Alum Sib (Krasnoyarsk).2007;13

    Google Scholar 

  65. Lossius LR, Øye H. Melt penetration and chemical reactions in industrial aluminum carbon cathodes. Metall Mater Trans B. 2000;31B:1213–24.

    Article  Google Scholar 

  66. Brisson PI, Soucy G, Fafard M, Dionne M. The effect of sodium on the carbon lining of the aluminum electrolysis cell – A review. Can Metall Q. 2005;44(2):265–80.

    Article  Google Scholar 

  67. Wang Z, Ratvik AP, Skybakmoen E, Grande T. Interaction of sodium vapor and graphite, studied by thermogravimetric analysis. Light Met. 2014;1239–44.

    Google Scholar 

  68. Dewing EW. The reaction of sodium with non-graphite carbon: reactions occurring in the linings of aluminium reduction cells. Trans Met Soc AIME. 1963;227:1328.

    Google Scholar 

  69. Krohn C, Sorlie M, Øye H. Penetration of sodium and bath constituents into cathode carbon materials used in industrial cells. Light Met. 1982;311.

    Google Scholar 

  70. Ratvik AP, et al. The effect of current density on cathode expansion during start-up. Light Met. 2008;973–8.

    Google Scholar 

  71. Dreyfus JM, Rivoaland L, Lacroix S. Variable resistivity cathode against graphite erosion. Light Met. 2004;603–8.

    Google Scholar 

  72. Øye H, Thonstad J, Dahlqvist K, Handa S, de Nora V. Reduction of sodium-induced stresses in Hall-Heroult cells. Aluminium. 1996;72:918–24.

    Google Scholar 

  73. Rafieli F, Hiltman F, Hyland M, Welch B. Sub-surface carbide formation contributing to pitting and accelerated cathode wear. Light Met. 2001;747–52.

    Google Scholar 

  74. Murchi A, Chen W, Tremblay M. Comparative characterization of graphitized and graphitic cathode blocks. Light Met. 2003;617–24.

    Google Scholar 

  75. Houston GJ, Welch B, Young D. Uptake of electrochemically generated forms of sodium by various carbons. Light Met. 1981;529–40.

    Google Scholar 

  76. Dell M. Percolation of Hall bath through carbon potlining and insulation. J Met. 1971;23(6):18.

    Google Scholar 

  77. Dewing EW. The reaction of sodium with non-graphitic carbon: Reactions occurring in the linings of aluminium reduction cells. Trans Metall Soc AIME. 1963;227:1328–34.

    Google Scholar 

  78. Wilkening S, Reny P. Erosion rate testing of graphite cathode materials. Light Met. 2004;597–602.

    Google Scholar 

  79. Taberaux A, Brown JH, Eidridge IG, Alcom TR. Erosion of cathode blocks in 180 kA prebaked cells. Light Met. 1999;187.

    Google Scholar 

  80. Toda S, Wakasa T. Improvement of abrasion resistance of graphitized cathode block for aluminium reduction cells. Light Met. 2003;647–53.

    Google Scholar 

  81. Schnittker A, Nawrocki H. Performance of graphitized carbon cathode blocks. Light Met. 2003;641–5.

    Google Scholar 

  82. Patel P, Hyland M, Hiltman F. Influence of internal cathode structure on behavior during electrolysis, part 2: Porosity and wear mechanisms in graphitized cathode material. Light Met. 2005;757–62.

    Google Scholar 

  83. Patel P, Hyland M, Hiltman F. Influence of internal cathode structure on behavior during electrolysis, part 3: Wear behavior in graphitic materials. Light Met. 2006;633–8.

    Google Scholar 

  84. Dreyfus JM, Joncourt J. Erosion mechanisms in smelters equipped with graphite blocks: A mathematical modeling approach. Light Met. 1999;199–206.

    Google Scholar 

  85. Liao X, Øye H. Physical and chemical wear of carbon cathode materials. Carbon 1996;649–61.

    Google Scholar 

  86. Skybakmoen E, Ratvik A, Solheim A, Rolseth S, Gundbransen H. Laboratory test methods for determining the cathode wear mechanism in aluminium cells. Light Met. 2007;815–20.

    Google Scholar 

  87. Tschope K, Store A, Solheim A, Skybakmoen E, Grande T, Ratwik A. Electrochemical wear of carbon cathodes in electrowinning of aluminium. J Metals. 2013;65:1403–10.

    Google Scholar 

  88. Hiltman F, Gudbransen Y, Rolseth S, Thonstad J. Laboratory test method for measuring wear rates of carbon cathode materials. Light Met. 2003;655–9.

    Google Scholar 

  89. Vasshaug K, Foosnaes T, Haarberg G, Ratvik A, Skybakmoen E. Wear of carbon cathodes in cryolite-alumina melts. Light Met. 2007;821–6.

    Google Scholar 

  90. Brilloit P, Lossius LP, Øye H. Penetration and chemical reactions in carbon cathodes during aluminum electrolysis: part I. Laboratory Experiments. Metall Trans B. 1993;24B:75–89.

    Article  Google Scholar 

  91. Krohn C, Sorlie M, Øye H. Penetration of sodium and bath constituents into cathode carbon materials used in industrial cells. Light Met. 1982;311–24.

    Google Scholar 

  92. Feng N, Kvande H, Øye H. Penetration of sodium and molten bath into high pressure baked cathode blocks. Aluminium. 1997;73:265–70.

    Google Scholar 

  93. ISO 17544 ISO 17544:2004. Carbonaceous materials used in the production of aluminium – cold and tepid ramming pastes – determination of rammability of unbaked pastes.

    Google Scholar 

  94. ISO 14427 ISO 14427:2004. Carbonaceous materials used in the production of aluminium – cold and tepid ramming pastes – preparation of unbaked test specimens and determination of apparent density after compaction.

    Google Scholar 

  95. ISO 14428 ISO 14428:2005. Carbonaceous materials for the production of aluminium – cold and tepid ramming pastes – expansion/shrinkage during baking.

    Google Scholar 

  96. ISO 20202 ISO 20202:2004. Carbonaceous materials used in the production of aluminium – cold and tepid ramming pastes – preparation of baked test pieces and determination of loss on baking.

    Google Scholar 

  97. ISO 14425:2004. Cold ramming pastes – determination of volatile matter content of unbaked pastes.

    Google Scholar 

  98. ISO/TS 14425:2004. Cold ramming pastes – determination of effective binder content and aggregate content by extraction with quinolone, and determination of effective grain size distribution.

    Google Scholar 

  99. Zhang H, de Nora V, Sekhar JA. Materials used in Hall-Heroult cells for aluminum production. 1994.

    Google Scholar 

  100. Billehaug K, Øye H. Aluminium 1980;56:642–648, 713–17.

    Google Scholar 

  101. Sierre R, Pawlek P. Aluminium 1990;66:573–82.

    Google Scholar 

  102. Liao X, Lin Y. Light Met. 1990;409–12.

    Google Scholar 

  103. Alcorn TR, Stewart DV, Taberaux AT. Light Met. 1990, TMS, 413–8.

    Google Scholar 

  104. Brown GD, Hardie GJ, Shaw RP, Taylor MP. Proceedings of 6th Australian Al Smelter Workshop, 1998, p. 499.

    Google Scholar 

  105. Yasanskaya G. Investigation of interactions of molten metals with refractory compounds. Kiev: Naukova Dumka; 1964. 18 p.

    Google Scholar 

  106. Properties, processing and application of refractory compounds, Reference book. Moscow, Metallurgiya; 1986. 893 p.

    Google Scholar 

  107. Wendt H, Dermetiek S. Erosion of sintered titanium diboride cathodes during cathodic aluminium deposition from lithium chloride/aluminium chloride melts. J Appl Electrochem.1990;20(3):438–41.

    Article  Google Scholar 

  108. Wrei X, Runchi L, Xingwei Z, Xu S, Meiqiu L. Titanium diboride-carbon composite as inert cathode materials in Hall-Heroult cells for aluminium electrolysis. Rare Met. 1992;11 (4):260–4.

    Google Scholar 

  109. Lu H, Jia W, Ma R. Titanium diboride and molybdenum silicide composite coating on cathode carbon blocks in aluminium electrolysis cells by atmospheric plasma spraying. Light Met. 2005;785–8.

    Google Scholar 

  110. Huimin L. Titanium diboride and wolfram silicide composite, used as aluminium electrolysis inert cathode materials. Light Met. 2006;687–90.

    Google Scholar 

  111. Finch NJ. The mutual solubilities of titanium and boron in pure aluminium. Metall Trans.1992;3:2709.

    Article  Google Scholar 

  112. Øye H, de Nora V, Duruz JJ, Jhonson G. Aluminum reduction cell and system for energy. TiB2 coating on cathode carbon materials. Light Met. 1997;279–86.

    Google Scholar 

  113. Seitz K, Hiltmann F. Titanium diboride plasma coating of carbon cathode materials, part 1, coating process and microstructure. Light Met. 1998;379–83.

    Google Scholar 

  114. Hiltmann F, Seitz K. Titanium diboride plasma coating of carbon cathode materials, part 2, characterization. Light Met. 1998;385–90.

    Google Scholar 

  115. Duan S, Shi Q, Wang Z. Electrode processes in the electrochemical synthesis of TiB2 in molten fluorides. Proc Electrochem Soc. 1994;94–13:539–47.

    Google Scholar 

  116. Devyatkin SV, et al. Electrochemical synthesis of titanium diboride coatings from cryolite melts. Molten Salt Forum 1998;5–6 (Molten Salt Chemistry and Technology 5): 331–34.

    Google Scholar 

  117. Ibrahiem MO, Foosnæs T, Øye H. Stability of TiB2-C composite coatings. Light Met. 2006;691–5.

    Google Scholar 

  118. Liao X, et al. Potline scale application of TiB2-coating in Hefei Aluminium and Carbon Plant. Light Met. 1998;685–8.

    Google Scholar 

  119. Parker DM. New cathode material may bring revolution. Am Met Mark. 1996;104(40):8–9.

    Google Scholar 

  120. Sekhar JA, et al. A critical analysis of sodium membranes to prevent carbon cathode damage in the Hall-Heroult cell. Light Met. 1996;271–8.

    Google Scholar 

  121. Sekhar JA, De Nora V, Liu J. A porous titanium diboride composite cathode coating for the Hall-Heroult cell. Metall Mater Trans B. 1998;29B:59–69.

    Article  Google Scholar 

  122. Sekhar JA, et al. TiB2/colloidal alumina carbon cathode coatings in the Hall-Heroult and drained cells. Light Met. 1998;605–15.

    Google Scholar 

  123. Wang X, et al. Evaluation of colloidal alumina bonded TiB2 coatings for improving the carbon cathode performance in Hall-Heroult cells. Molten Salt Forum. 1998;5–6:319–26.

    Google Scholar 

  124. Liu F, Yang H. Production technology development of carbon materials for aluminium electrolysis in China. Light Met. 2003;575–9.

    Google Scholar 

  125. Welch B. Aluminium production paths in the new millennium. J Metals. 1991;51:24–8.

    Google Scholar 

  126. Welch B, Hyland M, James BJ. Future materials requirements for the high-energy-intensity production of aluminium. J Metals. 2001;N2:13–8.

    Google Scholar 

  127. Jarret N. Cathode design, p. 60–85. In: Burkin AR, editors. Production of aluminium and alumina. Wiley; 1987. 238 p.

    Google Scholar 

  128. Kosolapova TY (ed). Properties, application and application of heat prof compounds, Reference book (in Russian). M Metall 1986. 928 p.

    Google Scholar 

  129. Moulson F. J Mater Sci. 1979;14(5):1617–51.

    Google Scholar 

  130. Mangels JA. Effect of rate-controlled nitriding and nitriding atmospheres on the formation of reaction-bonded Si3N4. Am Ceram Soc Bull. 60;613–7.

    Google Scholar 

  131. Andrey Yurkov, Oxana Danilova, Alexey Dovgal, N-SiC Side Lining – variations of materials structure, Light Metals 2014, TMS (Minerals, Metals and Materials Society), 2014, 1245–1249.

    Google Scholar 

  132. Andrey Yurkov, Oksana Danilova, Alex Dovgal, SiC side lining of reduction cells – aspects of physical chemistry in processing and degradation, Proceedings of 11th Australasian Aluminium Smelting Technology Conference, Dubai, UAE, 6-11 December 2014, Editors: Barry Welch, Maria Scillos-Kazakos, UNSW, Australia, IBSN 978-0-7334-3518-8, 23W4.

    Google Scholar 

  133. Andrey Yurkov, Oxidation resistance and corrosion resistance of silicon carbide side lining, 33rd INTERNATIONAL CONFERENCE OF ICSOBA “Global and Gulf Region Developments in Bauxite, Alumina and Aluminium Production”, Travaux ICSOBA Vol. 40. No. 44 Dubai, 2015, AL 19. ISSN 0350-7548

    Google Scholar 

  134. Riley F. Structural ceramics. Fundamentals and case studies. Cambridge University Press; 2009. 405 p.

    Google Scholar 

  135. Yurkov A, Danilova O, Dovgal A. Nitride bonded silicon carbide refractories: structure variations and corrosion resistance, 13th Biennial Worldwide Congress on Refractories UNITECR 2013, the Unified International Conference on Refractories, 10–13 Sept. 2013, Victoria, p. 991–6.

    Google Scholar 

  136. Yurkov A, Danilova O, Dovgal A. N-SiC side lining – variations of materials structure. Light Met. 2014;1245–9.

    Google Scholar 

  137. O. Danilova, A. Dovgal, A. Yurkov, V. Doroganov, E. Evtushenko, Si3N4-SiC materials – properties and physical chemistry aspects of processing, 57th International Colloquium on Refractories “Refractories for Metallurgy”, 2014, September 24th and 25th, Aahen, Germany, p. 49–53.

    Google Scholar 

  138. E. Skybakmoen, T. Grande, Zh. Wang, The influence of microstructure of Si3N4—SiC side lining materials on chemical/oxidation resistance behavior tasted in laboratory scale, Proceedings of 11th Australasian Aluminium Smelting Technology Conference, Dubai, UAE, 6–11 December 2014, Editors: Barry Welch, Maria Scillos-Kazakos, UNSW, Australia, IBSN 978-0-7334-3518-8, 23W3.

    Google Scholar 

  139. Jorge E, Marguin O. Si3Nq bonded SiC refractories for higher aluminium cell performance. Aluminium times. Sept 2004;47–50.

    Google Scholar 

  140. Jorge E, Marguin O, Temme P. The usage of N-SiC refractories for the increasing of productivity of aluminium reduction cells. Alum Sib. 2003;9:203–8. Krasnoyarsk.

    Google Scholar 

  141. Etzion R, Metson J, Depree N. Wear mechanism of silicon nitride bonded silicon carbide refractory materials. Light Met. 2008;137:955–9.

    Google Scholar 

  142. Zhao J, Dong J, Wang W, Cheng Z, Zhang Z. Comparison of cryolite resistance of silicon carbide materials. Light Met. 2000;123:443–8.

    Google Scholar 

  143. Wang Z, Skybakmoen E. Tor Grande chemical degradation of Si3N4-bonded SiC sidelining materials in aluminium electrolysis cells. J Am Ceram Soc. 2009;92:1296–302.

    Article  Google Scholar 

  144. Xue J, Wu L, Liu Q, et al. Sidewall materials for the Hall-Heroult process. Light Met. 883.

    Google Scholar 

  145. Proshkin AV, Pingin VV, Polyakov PV, et al. Analysis of decay of side lining in cathodes for aluminium reduction cells. J Sib Fed Univ Eng Technol. 2013;3:276–84.

    Google Scholar 

  146. T. Thonnesen, R. Telle, M. Breuers, Oxidation resistance of SiC based refractory lining in steam atmospheres – materials properties and testing methods, 47th International Colloquium on Refractories,, aahen, 2004, p. 214–217.

    Google Scholar 

  147. T. Thonnesen, R. Telle, Refractory corrosion in industrial waste incineration process, Refractories World forum, 1 (2009), pp. 71–76

    Google Scholar 

  148. T. Thonnesen, E. Goerenz, R. Telle, Examination of different bonding characteristics of refractory SiC and the influence on oxidation resistance, Intercerem Refractory Manual, 2007, pp. 14–18

    Google Scholar 

  149. ASTM C863-00(2010) Standard test method for evaluating oxidation resistance of silicon carbide refractories at elevated temperatures.

    Google Scholar 

  150. R. Laucournet, V. Laurent, Didier Lombard, Chemical resistance of sidelining refractory based on Si3N4 bonded SiC, Light Metals, 2008, p. 961–866.

    Google Scholar 

  151. Skybakmoen E, Stoen L, Kvello J, Darrel O. Quality evaluation of nitride bonded silicon carbide sidelining materials. Light Met. 2005;773–8.

    Google Scholar 

  152. Skybakmoen E, Gudbransen H, Stoen LI. Chemical resistance of sidelining materials based on SiC and carbon in cryolitic melts – a laboratory study. Light Met. 1999;215–22.

    Google Scholar 

  153. Skybakmoen E, Kvello J, Darrel O, Gudbransen H. Test and analysis of nitride bonded SiC sidelining materials: typical properties analysed 1997–2007. Light Met. 2008;943–8.

    Google Scholar 

  154. Xiaozhou C, Bingliang G, Zhaowen W, Xiamwey H, Zhuxian Q. A new test method for evaluating Si3N4-SiC brick’s corrosion resistance to aluminium electrolyte and oxygen. Light Met. 2006:659–61.

    Google Scholar 

  155. Zhao J, Zhang Z, Wang W, Liu G. Test method for resistance of SiC material to cryolite. Light Met. 663–6.

    Google Scholar 

  156. Liu C, Huang Z, Liu G, Zhang Z. Excellent cryolite resistance and high thermal conductivity SiC sidewall material for high amperage aluminium reduction cells. Light Met. 2010;889–94.

    Google Scholar 

  157. Cao C, Gao B, Wang Z, Hu X, Qui Z. A new test method for evaluating Si3N4-SiC bricks corrosion resistance to aluminium electrolyte and oxygen. Light Met. 2006;659–61.

    Google Scholar 

  158. Zhao J, Zhang Z, Wang W, Liu G. Test method for resistance of SiC material to cryolite. Light Met. 2006;663–6.

    Google Scholar 

  159. Mikhalev Y, Proshkin A, Isaeva L, Polyakov P, Filonenko A. Modification of a method for testing of SiC blocks, proceedings 31st international conference ICSOBA and 19th International Conference Aluminum of Siberia, Krasnoyarsk, 2013, p. 693–7.

    Google Scholar 

  160. Pawlek R. SiC in aluminium electrolysis cells. Light Met. 1995;527–33.

    Google Scholar 

  161. Gao B, Wang Z, Qiu Z. Corrosion tests and electrical resistivity measurement of SiC-Si3N4 refractory materials. Light Met. 2004;419–24.

    Google Scholar 

  162. Etzion R, Metson JB. Factors affecting corrosion resistance of silicon nitride bonded silicon carbide refractory blocks. J Am Ceram Soc. 2012;95:410–5.

    Article  Google Scholar 

  163. Jack KH. Sialons and related nitrogen ceramics. J Mater Sci. 1976;11:1135–58.

    Article  Google Scholar 

  164. Gauckler LJ. Contribution to the phase diagram Si3N4-AlN-Al3O3-SiO2. J Am Ceram Soc.1975;58:346–7.

    Article  Google Scholar 

  165. Yan XY, Mikhlis RZ, Rhamdhani MA, Brooks GA. Aluminate spinels as sidewall lining for aluminium smelters. Light Met. 2011;1085–90.

    Google Scholar 

  166. Flickel AF, Volker M. On the technological potential of SiC-TiB2-Si3N4 compounds in Al-electrolysis cells. Light Met. 1994;493–9.

    Google Scholar 

  167. ISO 13765-4:2004. Refractory mortars – Part 4: Determination of flexural bonding strength.

    Google Scholar 

  168. Arhipov G. Physico-chemical and thermo mechanical processes in the lining of aluminium reduction cells. News of RUSAL (in Russian) 2002;(1):37–45.

    Google Scholar 

  169. Yakimov I, Arhipov G, Pogodaev A, Shimansky A. Physico-chemical investigations of parts of the cathode lining of aluminium reduction cells. Alum Sib. 2003;9:209–13.

    Google Scholar 

  170. Arhipov G. Physico-chemical and thermo mechanical processes in the lining of aluminium reduction cells. News of RUSAL (in Russian), 2003;(4):9–18.

    Google Scholar 

  171. Arhipov G, Borisov V, Ivanova A. The changes of materials properties in the lining of aluminium reduction cells. News of RUSAL (in Russian), 2004;(8):23–8.

    Google Scholar 

  172. Arhipov A, Borisov V, Ivanova A. The properties of the lining of aluminium reduction cells. Novye orneupory (in Russian), 2004;(6):39–45.

    Google Scholar 

  173. Ivanovsky L, Lebedev V, Nekrasov V. Anode processes in molten halogenides. M Nauka 1983. 268 p.

    Google Scholar 

  174. Schoning C, Grande T, Silian O-J. Cathode refractory materials for the aluminium reduction cells. Light Met. 1999;231–8.

    Google Scholar 

  175. Sturm E, Prepeneit J, Sahling M. Economic aspects of an effective diffusion barrier. Light Met. 2002;433–9.

    Google Scholar 

  176. Pelletier R, Allaire C. Corrosion in potlining refractories: Effect of cathode material interpreted using a unified approach. J Met. 2003;59–62.

    Google Scholar 

  177. Siljan OJ, Junge O, Swendsen T, Thovsen K. Experiences with dry barrier powder materials in aluminium electrolysis cells. Light Met. 1988;573–81.

    Google Scholar 

  178. Melas J. Chemobar, a dry barrier material for aluminium reduction cells. Light Met Age. 1994;53(1–2):62. 3437

    Google Scholar 

  179. ISO 20292:2009. Materials for the production of primary aluminium – dense refractory bricks – determination of cryolite resistance.

    Google Scholar 

  180. Tabereaux AT. Reviewing advances in cathode refractory materials. J Met. 1992;20–6.

    Google Scholar 

  181. Allaire C. Electrolysis bath testing of refractories at Alcan. J Can Ceram Soc. 1991;60 (2):47–52.

    Google Scholar 

  182. Allaire C, Pelletier R, Siljan OJ, Tabereaux A. An improved corrosion test for potlining refractories. Light Met. 2001;245–9.

    Google Scholar 

  183. Simakov D, Proshkin A. Tests for cryolite resistance of refractory materials. News of RUSAL (in Russian). 2004;8:34–41.

    Google Scholar 

  184. Harris D, Oprea G. Cryolite penetration studies on barrier refractories for aluminum electrolytic cells. Light Met. 2000;419–27.

    Google Scholar 

  185. Siljan OJ, Grande T, Schoning C. Refractories for aluminium electrolysis cells. Part 4: Comparison of laboratory investigations and autopsies of pot linings. Aluminium. 2001;77:809–14.

    Google Scholar 

  186. Rutlin J, Grande T. Fluoride attack on aluminosilicate refractories in aluminium reduction cells. Light Met. 1997;295–301.

    Google Scholar 

  187. Grande T, Rutlin J. Viscosity of oxyfluoride melts relevant to the deterioration of refractory linings in aluminium reduction cells. Light Met. 1999;295–301.

    Google Scholar 

  188. Oprea G. Corrosion tests on refractories for aluminium electrolytic cells, Proceedings of the 9th symposium on refractories for the aluminum industry, 1999, p. 189–205.

    Google Scholar 

  189. Guangchun Y, Wangxi Z, Zhuxian Q, et al. On the MgO-C composite refractory diffusion barriers in alumina reduction cell cathodes. Light Met. 1993;349–51.

    Google Scholar 

  190. Siljan OJ, Slagnes S, Sekkingstad A, Aaram S. Olivin-based refractories in potlinings of aluminium electrolysis cells. Light Met. 2004;405–11.

    Google Scholar 

  191. Grande T, Rutlin J. Viscosity of oxyfluoride melts relevant to the deterioration of refractory linings in aluminium reduction cells. Light Met. 1999.

    Google Scholar 

  192. Siljan OJ. Studies of the refractory – melt interface in aluminium reduction cells, refractories for the next millennium, Proceedings of the 9th Symposium Refractories for the Aluminum Industry, 1999.

    Google Scholar 

  193. Schoning C, Grande T, Siljan OJ. Cathode refractory materials for aluminium reduction cells. Light Met. 1999;155–76.

    Google Scholar 

  194. Yurkov A, Hramenko S, Borisov V. The influence of the structure and the properties of carbon cathode blocks in early shut downs of the reduction cells. Alum Sib 2007;13.

    Google Scholar 

  195. Solheim A, Schoning C. Sodium vapor degradation of refractories used in aluminium cells. Light Met. 2008;967–72.

    Google Scholar 

  196. Grande T, Schoning C, Siljan OJ. Cathode refractory materials for aluminium reduction cells. Light Met. 1999;231–7.

    Google Scholar 

  197. Yurkov A, Akselrod L, Kvyatkovsky O. The corrosion resistance to cryolite of new and traditional refractories. News of RUSAL (in Russian). 2003;4:53–6.

    Google Scholar 

  198. Allaire C. Refractory lining for electrolytic cells. J Am Ceram Soc. 1992;75:2308–11.

    Article  Google Scholar 

  199. Weibel R, Juhl LF, Nielsen B, et al. Aging of cathode refractory materials in aluminium reduction cells. Light Met. 2002;425–33.

    Google Scholar 

  200. Kaplan F, Akselrod L, Puchkelevich Y, Yurkov A. Heat insulation materials for aluminium reduction cells. Novye Ogneup (in Russian). 2002;10:9–18.

    Google Scholar 

  201. Yakimov I, Arhipov G, Pogodaev A, Shimansky A. Physico-chemical investigations of parts of the cathode lining of aluminium reduction cells. Alum Sib. 2003;9:209–13. Krasnoyarsk.

    Google Scholar 

  202. Arhipov G, Borisov V, Ivanova A. The properties of the lining of aluminium reduction cells. Novye Ogneup (in Russian), 2004;(6):39–45.

    Google Scholar 

  203. ASTM C-155-97 (2002). Standard classification of insulating firebrick.

    Google Scholar 

  204. ISO 2245-1990. Shaped insulating refractory products: classification.

    Google Scholar 

  205. Refractory engineering: Materials – design – construction. 2nd ed. Essen, Vulkan-Verl.;1996. 355 р.

    Google Scholar 

  206. ISO 5017:2013–01. (E) Dense shaped refractory products – determination of bulk density, apparent porosity and true porosity.

    Google Scholar 

  207. John D, Maurage R. Sialon bonded silicon carbide sidewall pieces for the aluminium reduction cell. Ceram Ind Int. 1992;182:42.

    Google Scholar 

  208. Proshkin A, Pogodaev A. Property change of dry barrier mixes in a cathode of aluminium reduction cells. Light Met. 2007;833–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yurkov, A. (2017). Refractories and Carbon Cathode Materials for Aluminum Reduction Cells. In: Refractories for Aluminum. Springer, Cham. https://doi.org/10.1007/978-3-319-53589-0_2

Download citation

Publish with us

Policies and ethics