Skip to main content

Asbestos-Induced Inflammation in Malignant Mesothelioma and Other Lung Diseases

  • Chapter
  • First Online:
  • 996 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Asbestos exposure can lead to many lung and mesothelial cell diseases, including fibrosis and malignant mesothelioma. These are devastating diseases that are difficult to treat due to the long latency period and lack of predictive markers. Available literature shows that there is consensus among researchers that inflammation plays a significant role in the development of these diseases. Furthermore, there is a potential that early inflammatory signatures could be exploited as biomarkers for diagnosis and targets for treatment. This chapter reviews recent information, ranging from experimental disease models to asbestos-exposed individuals, that suggests a critical role for asbestos-induced inflammation in disease causation; this information has implications for the identification of novel predictive biomarkers and therapeutic targets to aid in early diagnosis and treatment of asbestos-associated diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abakay O, Tanrikulu AC, Palanci Y et al (2014) The value of inflammatory parameters in the prognosis of malignant mesothelioma. J Int Med Res 42:554–565

    Article  PubMed  Google Scholar 

  • Acencio MM, Soares B, Marchi E et al (2015) Inflammatory cytokines contribute to asbestos-induced injury of mesothelial cells. Lung 193:831–837

    Article  CAS  PubMed  Google Scholar 

  • Ballan G, Del Brocco A, Loizzo S et al (2014) Mode of action of fibrous amphiboles: the case of Biancavilla (Sicily, Italy). Ann Ist Super Sanita 50:133–138

    PubMed  Google Scholar 

  • Becklake MR, Bagatin E, Neder JA (2007) Asbestos-related diseases of the lungs and pleura: uses, trends and management over the last century. Int J Tuberc Lung Dis 11:356–369

    CAS  PubMed  Google Scholar 

  • Benvenuto M, Mattera R, Taffera G et al (2016) The potential protective effects of polyphenols in asbestos-mediated inflammation and carcinogenesis of mesothelium. Nutrients 8:275

    Article  PubMed Central  Google Scholar 

  • Broaddus VC, Everitt JI, Black B et al (2011) Non-neoplastic and neoplastic pleural endpoints following fiber exposure. J Toxicol Environ Health B Crit Rev 14:153–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone M, Yang H (2012) Molecular pathways: targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma. Clin Cancer Res 18:598–604

    Article  CAS  PubMed  Google Scholar 

  • Chekol SS, Sun CC (2012) Malignant mesothelioma of the tunica vaginalis testis: diagnostic studies and differential diagnosis. Arch Pathol Lab Med 136:113–137

    Article  PubMed  Google Scholar 

  • Comar M, Zanotta N, Bonotti A et al (2014) Increased levels of C-C chemokine RANTES in asbestos exposed workers and in malignant mesothelioma patients from an hyperendemic area. PLoS One 9:e104848

    Article  PubMed  PubMed Central  Google Scholar 

  • Comar M, Zanotta N, Zanconati F et al (2016) Chemokines involved in the early inflammatory response and in pro-tumoral activity in asbestos-exposed workers from an Italian coastal area with territorial clusters of pleural malignant mesothelioma. Lung Cancer 94:61–67

    Article  CAS  PubMed  Google Scholar 

  • Dikensoy O (2008) Mesothelioma due to environmental exposure to erionite in Turkey. Curr Opin Pulm Med 14:322–325

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Murphy FA, Duffin R et al (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Dopp E, Yadav S, Ansari FA et al (2005) ROS-mediated genotoxicity of asbestos-cement in mammalian lung cells in vitro. Part Fibre Toxicol 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Dostert C, Petrilli V, Van Bruggen R et al (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dragon J, Thompson J, MacPherson M et al (2015) Differential susceptibility of human pleural and peritoneal mesothelial cells to asbestos exposure. J Cell Biochem 116:1540–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukagawa NK, Li M, Sabo-Attwood T et al (2008) Inhaled asbestos exacerbates atherosclerosis in apolipoprotein E-deficient mice via CD4+ T cells. Environ Health Perspect 116:1218–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung H, Kow YW, Van Houten B et al (1997) Patterns of 8-hydroxydeoxyguanosine formation in DNA and indications of oxidative stress in rat and human pleural mesothelial cells after exposure to crocidolite asbestos. Carcinogenesis 18:825–832

    Article  CAS  PubMed  Google Scholar 

  • Gavett SH, Parkinson CU, Willson GA et al (2016) Persistent effects of Libby amphibole and amosite asbestos following subchronic inhalation in rats. Part Fibre Toxicol 13:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Haegens A, Barrett TF, Gell J et al (2007) Airway epithelial NF-kappaB activation modulates asbestos-induced inflammation and mucin production in vivo. J Immunol 178:1800–1808

    Article  CAS  PubMed  Google Scholar 

  • Heintz NH, Janssen-Heininger YM, Mossman BT (2010) Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 42:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillegass JM, Miller JM, MacPherson MB et al (2013) Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Part Fibre Toxicol 10:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillegass JM, Shukla A, Lathrop SA et al (2010) Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model. Ann N Y Acad Sci 1203:7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraku Y, Kawanishi S, Ichinose T et al (2010) The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis. Ann N Y Acad Sci 1203:15–22

    Article  CAS  PubMed  Google Scholar 

  • Inamura K, Ninomiya H, Nomura K et al (2014) Combined effects of asbestos and cigarette smoke on the development of lung adenocarcinoma: different carcinogens may cause different genomic changes. Oncol Rep 32:475–482

    PubMed  PubMed Central  Google Scholar 

  • Jankovichova T, Jankovich M, Ondrus D et al (2015) Extremely rare tumour--malignant mesothelioma of tunica vaginalis testis. Bratisl Lek Listy 116:574–576

    CAS  PubMed  Google Scholar 

  • Judge S, Thomas P, Govindarajan V et al (2016) Malignant peritoneal mesothelioma: characterization of the inflammatory response in the tumor microenvironment. Ann Surg Oncol 23:1496–1500

    Article  PubMed  Google Scholar 

  • Kadariya Y, Menges CW, Talarchek J et al (2016) Inflammation-related IL1β/IL1R signaling promotes the development of asbestos-induced malignant mesothelioma. Cancer Prev Res 9:406–414

    Article  CAS  Google Scholar 

  • Landrigan PJ, Collegium R (2016) Comments on the causation of malignant mesothelioma: rebutting the false concept that recent exposures to asbestos do not contribute to causation of mesothelioma. Ann Glob Health 82:214–216

    Article  PubMed  Google Scholar 

  • Lemen RA, Dement JM, Wagoner JK (1980) Epidemiology of asbestos-related diseases. Environ Health Perspect 34:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning CB, Vallyathan V, Mossman BT (2002) Diseases caused by asbestos: mechanisms of injury and disease development. Int Immunopharmacol 2:191–200

    Article  CAS  PubMed  Google Scholar 

  • Moolgavkar SH, Brown RC, Turim J (2001) Biopersistence, fiber length, and cancer risk assessment for inhaled fibers. Inhal Toxicol 13:755–772

    Article  CAS  PubMed  Google Scholar 

  • Moore AJ, Parker RJ, Wiggins J (2008) Malignant mesothelioma. Orphanet J Rare Dis 3:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Mossman BT, Lippmann M, Hesterberg TW et al (2011) Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J Toxicol Environ Health B Crit Rev 14:76–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossman BT, Shukla A, Heintz NH et al (2013) New insights into understanding the mechanisms, pathogenesis, and management of malignant mesotheliomas. Am J Pathol 182:1065–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy FA, Poland CA, Duffin R et al (2011) Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178:2587–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy FA, Poland CA, Duffin R et al (2013) Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology 7:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Murphy FA, Schinwald A, Poland CA et al (2012) The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol 9:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers R (2012) Asbestos-related pleural disease. Curr Opin Pulm Med 18:377–381

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Toyokuni S (2010) Biopersistent fiber-induced inflammation and carcinogenesis: lessons learned from asbestos toward safety of fibrous nanomaterials. Arch Biochem Biophys 502:1–7

    Article  CAS  PubMed  Google Scholar 

  • Napolitano A, Pellegrini L, Dey A et al (2016) Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma. Oncogene 35:1996–2002

    Article  CAS  PubMed  Google Scholar 

  • Neumann V, Loseke S, Nowak D et al (2013) Malignant pleural mesothelioma: incidence, etiology, diagnosis, treatment, and occupational health. Dtsch Arztebl Int 110:319–326

    PubMed  PubMed Central  Google Scholar 

  • Ngamwong Y, Tangamornsuksan W, Lohitnavy O et al (2015) Additive synergism between asbestos and smoking in lung cancer risk: a systematic review and meta-analysis. PLoS One 10:e0135798

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura Y, Maeda M, Kumagai-Takei N et al (2013) Altered functions of alveolar macrophages and NK cells involved in asbestos-related diseases. Environ Health Prev Med 18:198–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norbet C, Joseph A, Rossi SS et al (2015) Asbestos-related lung disease: a pictorial review. Curr Probl Diagn Radiol 44:371–382

    Article  PubMed  Google Scholar 

  • O’Reilly KM, McLaughlin AM, Beckett WS et al (2007) Asbestos-related lung disease. Am Fam Physician 75:683–688

    PubMed  Google Scholar 

  • Ohar JA, Cheung M, Talarchek J et al (2016) Germline BAP1 mutational landscape of asbestos-exposed malignant mesothelioma patients with family history of cancer. Cancer Res 76:206–215

    Article  CAS  PubMed  Google Scholar 

  • Okada F (2007) Beyond foreign-body-induced carcinogenesis: impact of reactive oxygen species derived from inflammatory cells in tumorigenic conversion and tumor progression. Int J Cancer 121:2364–2372

    Article  CAS  PubMed  Google Scholar 

  • Okada F (2014) Inflammation-related carcinogenesis: current findings in epidemiological trends, causes and mechanisms. Yonago Acta Med 57:65–72

    PubMed  PubMed Central  Google Scholar 

  • Onishi Y, Nakahara Y, Hirano K et al (2016) IgG4-related disease in asbestos-related pleural disease. Respirol Case Rep 4:22–24

    PubMed  Google Scholar 

  • Peacock C, Copley SJ, Hansell DM et al (2000) Asbestos-related benign pleural disease. Clin Radiol 55:422–432

    Article  CAS  PubMed  Google Scholar 

  • Pfau JC, Serve KM, Noonan CW et al (2014) Autoimmunity and asbestos exposure. Autoimmune Dis 2014:782045

    PubMed  PubMed Central  Google Scholar 

  • Pietrofesa RA, Velalopoulou A, Arguiri E et al (2016) Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice. Carcinogenesis 37:177–187

    Article  CAS  PubMed  Google Scholar 

  • Prazakova S, Thomas PS, Sandrini A et al (2014) Asbestos and the lung in the 21st century: an update. Clin Respir J 8:1–10

    Article  PubMed  Google Scholar 

  • Rom WN, Palmer PE (1974) The spectrum of asbestos-related diseases. West J Med 121:10–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Safi A, Sadmi M, Martinet N et al (1992) Presence of elevated levels of platelet-derived growth factor (PDGF) in lung adenocarcinoma pleural effusions. Chest 102:204–207

    Article  CAS  PubMed  Google Scholar 

  • Sanchez VC, Pietruska JR, Miselis NR et al (2009) Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:511–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schinwald A, Murphy FA, Prina-Mello A et al (2012) The threshold length for fiber-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci 128:461–470

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Lounsbury KM, Barrett TF et al (2007) Asbestos-induced peribronchiolar cell proliferation and cytokine production are attenuated in lungs of protein kinase C-delta knockout mice. Am J Pathol 170:140–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla A, MacPherson MB, Hillegass J et al (2009) Alterations in gene expression in human mesothelial cells correlate with mineral pathogenicity. Am J Respir Cell Mol Biol 41:114–123

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Ramos-Nino M, Mossman BT (2003) Cell signaling and transcription factor activation by asbestos in lung injury and disease. Int J Biochem Cell Biol 35:1198–1209

    Article  CAS  PubMed  Google Scholar 

  • Strizzi L, Catalano A, Vianale G et al (2001) Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol 193:468–475

    Article  CAS  PubMed  Google Scholar 

  • Swiatkowska B, Szubert Z, Sobala W et al (2015) Predictors of lung cancer among former asbestos-exposed workers. Lung Cancer 89:243–248

    Article  PubMed  Google Scholar 

  • Testa JR, Cheung M, Pei J et al (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43:1022–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JK, Westbom CM, MacPherson MB et al (2014) Asbestos modulates thioredoxin-thioredoxin interacting protein interaction to regulate inflammasome activation. Part Fibre Toxicol 11:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Trpkov K, Barr R, Kulaga A et al (2011) Mesothelioma of tunica vaginalis of “uncertain malignant potential” – an evolving concept: case report and review of the literature. Diagn Pathol 6:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Van TT, Hanibuchi M, Goto H et al (2012) SU6668, a multiple tyrosine kinase inhibitor, inhibits progression of human malignant pleural mesothelioma in an orthotopic model. Respirology 17:984–990

    Article  PubMed  Google Scholar 

  • Westbom C, Thompson JK, Leggett A et al (2015) Inflammasome modulation by chemotherapeutics in malignant mesothelioma. PLoS One 10:e0145404

    Article  PubMed  PubMed Central  Google Scholar 

  • Westbom CM, Shukla A, MacPherson MB et al (2014) CREB-induced inflammation is important for malignant mesothelioma growth. Am J Pathol 184:2816–2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi T, Fujimoto N, Nishi H et al (2015) Prognostic significance of the lymphocyte-to-monocyte ratio in patients with malignant pleural mesothelioma. Lung Cancer 90:111–117

    Article  PubMed  Google Scholar 

  • Yang H, Rivera Z, Jube S et al (2010) Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci U S A 107:12611–12616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from NIEHS (RO1ES021110) and a Pathology and Laboratory Medicine fellowship.

Conflict of Interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thompson, J.K., Shukla, A. (2017). Asbestos-Induced Inflammation in Malignant Mesothelioma and Other Lung Diseases. In: Testa, J. (eds) Asbestos and Mesothelioma. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53560-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53560-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53558-6

  • Online ISBN: 978-3-319-53560-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics