Skip to main content

Speaker Tracking on Multiple-Manifolds with Distributed Microphones

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10169))

Abstract

Speaker tracking in a reverberant enclosure with an ad hoc network of multiple distributed microphones is addressed in this paper. A set of prerecorded measurements in the enclosure of interest is used to construct a data-driven statistical model. The function mapping the measurement-based features to the corresponding source position represents complex unknown relations, hence it is modelled as a random Gaussian process. The process is defined by a covariance function which encapsulates the relations among the available measurements and the different views presented by the distributed microphones. This model is intertwined with a Kalman filter to capture both the smoothness of the source movement in the time-domain and the smoothness with respect to patterns identified in the set of available prerecorded measurements. Simulation results demonstrate the ability of the proposed method to localize a moving source in reverberant conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, J., Berkley, D.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)

    Article  Google Scholar 

  2. Benesty, J.: Adaptive eigenvalue decomposition algorithm for passive acoustic source localization. J. Acoust. Soc. Am. 107(1), 384–391 (2000)

    Article  Google Scholar 

  3. Bertin, N., Kitić, S., Gribonval, R.: Joint estimation of sound source location and boundary impedance with physics-driven cosparse regularization. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6340–6344 (2016)

    Google Scholar 

  4. Deleforge, A., Forbes, F., Horaud, R.: Acoustic space learning for sound-source separation and localization on binaural manifolds. Int. J. Neural Syst. 25(1), 1440003 (2015)

    Article  Google Scholar 

  5. Dmochowski, J.P., Benesty, J.: Steered beamforming approaches for acoustic source localization. In: Cohen, I., Benesty, J., Gannot, S. (eds.) Speech Processing in Modern Communication, pp. 307–337. Springer, Heidelberg (2010)

    Google Scholar 

  6. Gannot, S., Burshtein, D., Weinstein, E.: Signal enhancement using beamforming and nonstationarity with applications to speech. IEEE Trans. Sign. Process. 49(8), 1614–1626 (2001)

    Article  Google Scholar 

  7. Gannot, S., Dvorkind, T.G.: Microphone array speaker localizers using spatial-temporal information. EURASIP J. Adv. Sig. Process. 2006(1), 1–17 (2006)

    MATH  Google Scholar 

  8. Habets, E.A.P.: Room impulse response (RIR) generator, July 2006. http://home.tiscali.nl/ehabets/rir_generator.html

  9. Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Sig. Process. 24(4), 320–327 (1976)

    Article  Google Scholar 

  10. Laufer-Goldshtein, B., Talmon, R., Gannot, S.: A study on manifolds of acoustic responses. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) LVA/ICA 2015. LNCS, vol. 9237, pp. 203–210. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22482-4_23

    Google Scholar 

  11. Laufer-Goldshtein, B., Talmon, R., Gannot, S.: Semi-supervised source localization on multiple-manifolds with distributed microphones. pre-print arXiv:1610.04770v1, September 2016

  12. Salvati, D., Drioli, C., Foresti, G.L.: A weighted MVDR beamformer based on SVM learning for sound source localization. Pattern Recogn. Lett. 84, 15–21 (2016)

    Article  Google Scholar 

  13. Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  14. Schwartz, O., Gannot, S.: Speaker tracking using recursive EM algorithms. IEEE/ACM Trans. Audio Speech Lang. Process. 22(2), 392–402 (2014)

    Article  Google Scholar 

  15. Smaragdis, P., Boufounos, P.: Position and trajectory learning for microphone arrays. IEEE Trans. Audio Speech Lang. Process. 15(1), 358–368 (2007)

    Article  Google Scholar 

  16. Ward, D.B., Lehmann, E.A., Williamson, R.C.: Particle filtering algorithms for tracking an acoustic source in a reverberant environment. IEEE Trans. Speech Audio Process. 11(6), 826–836 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bracha Laufer-Goldshtein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Laufer-Goldshtein, B., Talmon, R., Gannot, S. (2017). Speaker Tracking on Multiple-Manifolds with Distributed Microphones. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics