Skip to main content

Multimodality for Rainfall Measurement

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10169))

Abstract

The need for accurate monitoring of rainfall, essential for many fields such as: hydrology, transportation and agriculture, calls for optimal use of all available resources. However, as the existing monitoring equipment is diverse, and different tools provide measurements of different nature, fusing these measurements is a challenging task. At one extreme, rain gauges provide local, direct measurements of the accumulated rainfall, and at the other end, satellite observations provide remote images of clouds, from which rainfall is estimated. In between, weather radar measures reflectivity which is non-linearly related to rainfall. In light of the new opportunities introduced by the use of physical measurements from cellular communication networks for rainfall monitoring, I first review the approaches for fusion of different rainfall direct and indirect measurements, distinguishing it from data assimilation, widely used in meteorology. I will then suggest a unified approach to the problem, combining parametric and non-parametric tools, and will present preliminary results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.ecmwf.int/en/research/data-assimilation.

  2. 2.

    http://www.wmo.int/pages/prog/www/WRO/index_en.html.

  3. 3.

    http://www.wmo.int/pages/prog/www/WRO/index_en.html.

References

  1. Barrett, E.C., Beaumont, M.J.: Satellite rainfall monitoring: an overview. Remote Sens. Rev. 11(1-4), 23–48 (1994)

    Article  Google Scholar 

  2. Barthès, L., Mallet, C.: On the opportunistic use of geostationary satellite signals to estimate rain rate in the purpose of radar calibration. In: 7th European Conference on Radar in Meteorology and Hydrology, ERAD 2012 (2012)

    Google Scholar 

  3. Berndt, C., Rabiei, E., Haberlandt, U.: Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios. J. Hydrol. 508, 88–101 (2014)

    Article  Google Scholar 

  4. Bianchi, B., et al.: A variational approach to retrieve rain rate by combining information from rain gauges, radars, and microwave links. J. Hydrometeorol. 14(6), 1897–1909 (2013)

    Article  Google Scholar 

  5. Bianchi, B., Rieckermann, J., Berne, A.: Detection of faulty rain gauges using telecommunication microwave links. In: 12nd International Conference on Urban Drainage, Porto Alegre/Brazil (2011)

    Google Scholar 

  6. Bianchi, B., Rieckermann, J., Berne, A.: Quality control of rain gauge measurements using telecommunication microwave links. J. Hydrol. 492, 15–23 (2013)

    Article  Google Scholar 

  7. Brandes, E.A.: Optimizing rainfall estimates with the aid of radar. J. Appl. Meteorol. 14(7), 1339–1345 (1975)

    Article  Google Scholar 

  8. Chwala, C., et al.: Precipitation observation using microwave backhaul links in the alpine and pre-alpine region of Southern Germany. Hydrol. Earth Syst. Sci. 16(8), 2647–2661 (2012)

    Article  Google Scholar 

  9. Cole, S.J., Moore, R.J.: Hydrological modelling using raingauge-and radar-based estimators of areal rainfall. J. Hydrol. 358(3), 159–181 (2008)

    Article  Google Scholar 

  10. Cummings, R.J., et al.: Using microwave links to adjust the radar rainfall field. Adv. Water Resour. 32(7), 1003–1010 (2009)

    Article  Google Scholar 

  11. Delrieu, G., et al.: Weather radar and hydrology. Adv. Water Resour. 32(7), 969–974 (2009)

    Article  Google Scholar 

  12. Fencl, M., et al.: Commercial microwave links instead of rain gauges: fiction or reality? Water Sci. Technol. 71(1), 31–37 (2015)

    Article  Google Scholar 

  13. Fijalkow, I., Heiman, E., Messer, H.: Rain estimation from heterogeneous sensor networks (2016, submitted)

    Google Scholar 

  14. Fijalkow, I., Heiman, E., Messer, H.: Parameter estimation from heterogeneous/multimodal data sets. IEEE Signal Process. Lett. 23(3), 390–393 (2016)

    Article  Google Scholar 

  15. Goldshtein, O., Messer, H., Zinevich, A.: Rain rate estimation using measurements from commercial telecommunications links. IEEE Trans. Signal Process. 57(4), 1616–1625 (2009)

    Article  MathSciNet  Google Scholar 

  16. Heiman, E., Messer, H.: Parameter estimation from multiple sensors with mixed resolution of quantization. In: 2014 IEEE 28th Convention of IEEE Electrical and Electronics Engineers in Israel (IEEEI) (2014)

    Google Scholar 

  17. Gosset, M., et al.: Improving rainfall measurement in gauge poor regions thanks to mobile telecommunication networks. Bull. Am. Meteorol. Soc. 97(3), 49–51 (2016)

    Article  MathSciNet  Google Scholar 

  18. Grum, M., et al.: Combined use of point rain gauges, radar, microwave link and level measurements in urban hydrologicalmodelling. Atmos. Res. 77(1), 313–321 (2005)

    Article  Google Scholar 

  19. Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015)

    Article  Google Scholar 

  20. Liberman, Y., et al.: New algorithm for integration between wireless microwave sensor network and radar for improved rainfall measurement and mapping. Atmos. Meas. Tech. 7(10), 3549–3563 (2014)

    Article  Google Scholar 

  21. Messer, H., Sendik, O.: A new approach to precipitation monitoring: a critical survey of existing technologies and challenges. IEEE Signal Process. Mag. 32(3), 110–122 (2015)

    Article  Google Scholar 

  22. Messer, H., Zinevich, A., Alpert, P.: Environmental monitoring by wireless communication networks. Science 312(5774), 713 (2006)

    Article  Google Scholar 

  23. Michaelides, S.C. (ed.): Precipitation: Advances in Measurement, Estimation and Prediction. Springer, Heidelberg (2008)

    Google Scholar 

  24. Morin, E., David, C., Robert, A.M., Xiaogang, G., Hoshin, V.G., Soroosh, S.: Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response. Adv. Water Resour. 29(6), 843–860 (2006)

    Article  Google Scholar 

  25. Rios Gaona, M.F., et al.: Measurement and interpolation uncertainties in rainfall maps from cellular communication networks. Hydrol. Earth Syst. Sci. 19(8), 3571–3584 (2015)

    Article  Google Scholar 

  26. Sideris, I.V., et al.: Real-time radar–rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland. Q. J. R. Meteorol. Soc. 140(680), 1097–1111 (2014)

    Article  Google Scholar 

  27. Overeem, A., Leijnse, H., Uijlenhoet, R.: Quantitative precipitation estimation using commercial microwave links. IAHS-AISH Publ., 129–134 (2012)

    Google Scholar 

  28. Overeem, A., Leijnse, H., Uijlenhoet, R.: Country-wide rainfall maps from cellular communication networks. Proceedings of the National Academy of Sciences 110(8), 2741–2745 (2013)

    Article  Google Scholar 

  29. Overeem, A., Leijnse, H., Uijlenhoet, R.: Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network. Atmos. Meas. Tech. 9(5), 2425–2444 (2016)

    Article  Google Scholar 

  30. Upton, G.J.G., et al.: Microwave links: the future for urban rainfall measurement? Atmos. Res. 77(1), 300–312 (2005)

    Article  Google Scholar 

  31. Vogl, S., et al.: Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields. Hydrol. Earth Syst. Sci. 16(7), 2311–2328 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

I deeply thank all past and present members of our research team in Tel Aviv University, co-led by Prof. PinhasAlpet for their fruitful cooperation and discussions. We thank our friends in the Israeli cellular providers: Cellcom, Pelephone, and PHI who providing us datafor more than a decade. Special thanks to InbarFijalkow and to Elad Heiman for fruitful joint work and the preliminary results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagit Messer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Messer, H. (2017). Multimodality for Rainfall Measurement. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics