Skip to main content

Effects of Tidal Stream Energy Extraction on Water Exchange and Transport Timescales

  • Chapter
  • First Online:
Marine Renewable Energy

Abstract

Over the last decade, many studies have been conducted to estimate the upper limit of the theoretical resource of tidal stream energy and its associated influence on volume flux. However, studies aimed at evaluating the effects of tidal energy extraction on water exchange and transport timescale have been limited. This chapter provides a detailed review of different methods—from analytical methods to advanced three-dimensional numerical models—for quantifying the far-field environmental impacts of tidal stream energy extraction. Case studies from an idealized tidal channel–bay system and a realistic site in the Tacoma Narrows of Puget Sound, Washington State, USA, are given to illustrate the modeling approach for assessing the impacts of tidal stream energy extraction on flushing time using a three-dimensional numerical model. Model results indicated that the change in flushing time is approximately linearly proportional to the volume flux reduction when the relative change in volume flux is small. However, the rate of change in flushing time is several times greater than that of volume flux reduction. The present study demonstrates that flushing time can be used as a unique parameter for quantifying the environmental impacts of tidal stream energy extraction on water exchange in coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, K. A., Potts, T., & Wilding, T. A. (2013). Marine renewable energy and Scottish west coast fishers: Exploring impacts, opportunities and potential mitigation. Ocean and Coastal Management, 75, 1–10.

    Article  Google Scholar 

  • Benjamins, S., Dale, A. C., Hastie, G., Waggitt, J. J., Lea, M. A., Scott, B., et al. (2015). Confusion reigns? A review of marine megafauna interactions with tidal-stream environments. Oceanography and Marine Biology: An Annual Review, 53(53), 1–54.

    Article  Google Scholar 

  • Blanchfield, J., Garrett, C., Wild, P., & Rowe, A. (2008). The extractable power from a channel linking a bay to the open ocean. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 289–297.

    Article  Google Scholar 

  • Bryden, I. G., & Couch, S. J. (2007). How much energy can be extracted from moving water with a free surface: A question of importance in the field of tidal current energy? Renewable Energy, 32, 1961–1966.

    Article  Google Scholar 

  • Bryden, I. G., Couch, S. I., Owen, A., & Melville, G. (2007). Tidal current resource assessment. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 221, 125–135.

    Article  Google Scholar 

  • Bryden, I. G., Grinsted, T., & Melville, G. T. (2004). Assessing the potential of a simple tidal channel to deliver useful energy. Applied Ocean Research, 26, 198–204.

    Article  Google Scholar 

  • Chen, C. S., Liu, H. D., & Beardsley, R. C. (2003). An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20, 159–186.

    Article  Google Scholar 

  • Copping, A., Sather, N. H. L., Whiting, J., Zydlewski, G., Staines, G., Gill, A., et al. (2016). Annex IV 2016 state of the science report: Environmental effects of marine renewable energy development around the world. Ocean Energy Systems, Seattle WA, USA.

    Google Scholar 

  • Criales, M. M., Zink, I. C., Haus, B. K., Wylie, J., & Browder, J. A. (2013). Effect of turbulence on the behavior of pink shrimp postlarvae and implications for selective tidal stream transport behavior. Marine Ecology Progress Series, 477, 161–176.

    Article  Google Scholar 

  • Defne, Z., Haas, K. A., & Fritz, H. M. (2011). Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA. Renewable Energy, 36, 3461–3471.

    Article  Google Scholar 

  • Defne, Z., Haas, K. A., Fritz, H. M., Jiang, L. D., French, S. P., Shi, X., et al. (2012). National geodatabase of tidal stream power resource in USA. Renewable and Sustainable Energy Reviews, 16, 3326–3338.

    Article  Google Scholar 

  • Draper, S., Houlsby, G. T., Oldfield, M. L. G., & Borthwick, A. G. L. (2010). Modelling tidal energy extraction in a depth-averaged coastal domain. IET Renewable Power Generation, 4, 545–554.

    Article  Google Scholar 

  • Dyer, K. R. (1973). Estuaries: A Physical Introduction. New Yrok: Wiley.

    Google Scholar 

  • Evans, P., Mason-Jones, A., Wilson, C., Wooldridge, C., O’Doherty, T., & O’Doherty, D. (2015). Constraints on extractable power from energetic tidal straits. Renewable Energy, 81, 707–722.

    Article  Google Scholar 

  • Furness, R. W., Wade, H. M., Robbins, A. M. C., & Masden, E. A. (2012). Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices. ICES Journal of Marine Science, 69, 1466–1479.

    Article  Google Scholar 

  • Garrett, C., & Cummins, P. (2005). The power potential of tidal currents in channels. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 461, 2563–2572.

    Article  MathSciNet  MATH  Google Scholar 

  • Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.

    Article  MATH  Google Scholar 

  • Gove, B., Williams, L. J., Beresford, A. E., Roddis, P., Campbell, C., Teuten, E., et al. (2016). Reconciling biodiversity conservation and widespread deployment of renewable energy technologies in the uk. PLoS One 11.

    Google Scholar 

  • Hakim, A. R., Cowles, G. W., & Churchill, J. H. (2013). The impact of tidal stream turbines on circulation and sediment transport in muskeget channel, MA. Marine Technology Society Journal, 47, 122–136.

    Article  Google Scholar 

  • Hammar, L., Eggertsen, L., Andersson, S., Ehnberg, J., Arvidsson, R., Gullstrom, M., et al. (2015). A probabilistic model for hydrokinetic turbine collision risks: Exploring impacts on fish. PLoS One 10.

    Google Scholar 

  • Hasegawa, D., Sheng, J. Y., Greenberg, D. A., & Thompson, K. R. (2011). Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dynamics, 61, 1845–1868.

    Article  Google Scholar 

  • Kadiri, M., Ahmadian, R., Bockelmann-Evans, B., Rauen, W., & Falconer, R. (2012). A review of the potential water quality impacts of tidal renewable energy systems. Renewable and Sustainable Energy Reviews, 16, 329–341.

    Article  Google Scholar 

  • Karsten, R. H., McMillan, I. M., Lickley, M. J., & Haynes, R. D. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 493–507.

    Article  Google Scholar 

  • Karsten, R., Swan, A. & Culina, J. (2013). Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 371.

    Google Scholar 

  • Kilcher, K., Thresher, R. & Tinnesand, H. (2016). Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part II: Tidal Energy. NREL/TP-5000-66079. National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  • Kuo, A. Y., & Neilson, B. J. (1988). A modified tidal prism model for water-quality in small coastal embayments. Water Science and Technology, 20, 133–142.

    Google Scholar 

  • Lo Brutto, O. A., Nguyen, T., Guillou, S. S., Thiebot, J., & Gualous, H. (2016). Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio. Renewable Energy, 99, 347–359.

    Article  Google Scholar 

  • Long, W., Jung, K. W., Yang, Z. Q., Copping, A., & Deng, Z. D. (2016). Coupled modeling of hydrodynamics and sound in coastal ocean for renewable ocean energy development. Marine Technology Society Journal, 50, 27–36.

    Article  Google Scholar 

  • Luketina, D. (1998). Simple tidal prism models revisited. Estuarine, Coastal and Shelf Science, 46, 77–84.

    Article  Google Scholar 

  • Martin-Short, R., Hill, J., Kramer, S. C., Avdis, A., Allison, P. A., & Piggott, M. D. (2015). Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renewable Energy, 76, 596–607.

    Article  Google Scholar 

  • Miller, R. G., Hutchison, Z. L., Macleod, A. K., Burrows, M. T., Cook, E. J., Last, K. S., et al. (2013). Marine renewable energy development: Assessing the Benthic footprint at multiple scales. Frontiers in Ecology and the Environment, 11, 433–440.

    Article  Google Scholar 

  • Myers, L., & Bahaj, A. S. (2005). Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renewable Energy, 30, 1713–1731.

    Article  Google Scholar 

  • Nash, S., O’Brien, N., Olbert, A., & Hartnett, M. (2014). Modelling the far field hydro-environmental impacts of tidal farms—A focus on tidal regime, inter-tidal zones and flushing. Computers and Geosciences, 71, 20–27.

    Article  Google Scholar 

  • Neill, S. P., Litt, E. J., Couch, S. J., & Davies, A. G. (2009). The impact of tidal stream turbines on large-scale sediment dynamics. Renewable Energy, 34, 2803–2812.

    Article  Google Scholar 

  • Officer, C. B. (1976). Physical Oceanography of Estuaries (and Associated Coastal Waters). New York: Wiley.

    Google Scholar 

  • Pacheco, A., & Ferreira, O. (2016). Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario. Applied Energy, 180, 369–385.

    Article  Google Scholar 

  • Polagye, B., Kawase, M., & Malte, P. (2009). In-stream tidal energy potential of Puget Sound, Washington. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 223, 571–587.

    Article  Google Scholar 

  • Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36, 222–234.

    Article  Google Scholar 

  • Polagye, B., Malte, P., Kawasel, M., & Durran, D. (2008). Effect of large-scale kinetic power extraction on time-dependent estuaries. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 471–484.

    Article  Google Scholar 

  • Rao, S., Xue, H. J., Bao, M., & Funke, S. (2016). Determining tidal turbine farm efficiency in the western passage using the disc actuator theory. Ocean Dynamics, 66, 41–57.

    Article  Google Scholar 

  • Roc, T., Greaves, D., Thyng, K. M., & Conley, D. C. (2014). Tidal turbine representation in an ocean circulation model: Towards realistic applications. Ocean Engineering, 78, 95–111.

    Article  Google Scholar 

  • Roche, R. C., Walker-Springett, K., Robins, R. E., Jones, J., Veneruso, G., Whitton, T. A., et al. (2016). Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK). Renewable Energy, 99, 1327–1341.

    Article  Google Scholar 

  • Sanford, L. P., Boicourt, W. C., & Rives, S. R. (1992). Model for estimating tidal flushing of small embayments. Journal of Waterway Port Coastal and Ocean Engineering-Asce, 118, 635–654.

    Article  Google Scholar 

  • Schlezinger, D. R., Taylor, C. D., & Howes, B. L. (2013). Assessment of zooplankton injury and mortality associated with underwater turbines for tidal energy production. Marine Technology Society Journal, 47, 142–150.

    Article  Google Scholar 

  • Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7, 165–174.

    Article  Google Scholar 

  • Shields, M. A., Woolf, D. K., Grist, E. P. M., Kerr, S. A., Jackson, A. C., Harris, R. E., et al. (2011). Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment. Ocean and Coastal Management, 54, 2–9.

    Article  Google Scholar 

  • Sutherland, G., Foreman, M., & Garrett, C. (2007). Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proceedings of the Institution of Mechanical Engineers Part A—Journal of Power and Energy, 221, 147–157.

    Article  Google Scholar 

  • Thiebot, J., du Bois, P. B., & Guillou, S. (2015). Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport—Application to the Alderney Race (Raz Blanchard), France. Renewable Energy, 75, 356–365.

    Article  Google Scholar 

  • van der Molen, J., Ruardij, P., & Greenwood, N. (2016). Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: Results of a biogeochemical model. Biogeosciences, 13, 2593–2609.

    Article  Google Scholar 

  • VanZwieten, J., McAnally,W., Ahmad, J., Davis, T., Martin, J., Bevelhimer, M., et al. (2015). In-stream hydrokinetic power: review and appraisal. Journal of Energy Engineering 141.

    Google Scholar 

  • Vennell, R. (2010). Tuning turbines in a tidal channel. Journal of Fluid Mechanics, 663, 253–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Venugopal, V. & Nemalidinne, R. (2014). Marine energy resource assessment for orkney and pentland waters with a coupled wave and tidal flow model. 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2014 (Vol. 9b).

    Google Scholar 

  • Wang, C. F., Hsu, M. H., & Kuo, A. Y. (2004). Residence time of the Danshuei River estuary. Taiwan. Estuarine Coastal and Shelf Science, 60, 381–393.

    Article  Google Scholar 

  • Wang, T. P., Yang, Z. Q., & Copping, A. (2015). A modeling study of the potential water quality impacts from in-stream tidal energy extraction. Estuaries and Coasts, 38, S173–S186.

    Article  Google Scholar 

  • Ward, J., Schultz, I., Woodruff, D., Roesijadi, G. & Copping, A. (2010). Assessing the effects of marine and hydrokinetic energy development on marine and estuarine resources. Oceans 2010.

    Google Scholar 

  • Williamson, B. J., Blondel, P., Armstrong, E., Bell, P. S., Hall, C., Waggitt, J. J., et al. (2016). A Self-Contained subsea platform for acoustic monitoring of the environment around marine renewable energy devices-field deployments at wave and tidal energy sites in Orkney, Scotland. IEEE Journal of Oceanic Engineering, 41, 67–81.

    Article  Google Scholar 

  • Wood, T. (1979). Modification of existing simple segmented tidal prism models of mixing in estuaries. Estuarine and Coastal Marine Science, 8, 339–347.

    Article  Google Scholar 

  • Work, P. A., Haas, K. A., Defne, Z., & Gay, T. (2013). Tidal stream energy site assessment via three-dimensional model and measurements. Applied Energy, 102, 510–519.

    Article  Google Scholar 

  • Yang, Z. Q., & Khangaonkar, T. (2010). Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: From tide flats to estuaries and coastal waters. Ocean Dynamics, 60, 1621–1637.

    Article  Google Scholar 

  • Yang, Z. Q., & Wang, T. P. (2015). Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts, 38, S187–S202.

    Article  Google Scholar 

  • Yang, Z. Q., Wang, T. P., & Copping, A. E. (2013). Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renewable Energy, 50, 605–613.

    Article  Google Scholar 

  • Yang, Z. Q., Wang, T. P., Copping, A., & Geerlofs, S. (2014). Modeling of in-stream tidal energy development and its potential effects in Tacoma Narrows, Washington, USA. Ocean and Coastal Management, 99, 52–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoqing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yang, Z., Wang, T. (2017). Effects of Tidal Stream Energy Extraction on Water Exchange and Transport Timescales. In: Yang, Z., Copping, A. (eds) Marine Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-53536-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53536-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53534-0

  • Online ISBN: 978-3-319-53536-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics