Skip to main content

Wave Energy Assessments: Quantifying the Resource and Understanding the Uncertainty

  • Chapter
  • First Online:

Abstract

The vast global wave energy resource holds great promise as an abundant, carbon-neutral resource for electricity generation. For wave energy to make a significant and measurable role in reducing our carbon footprint, highly resolved and accurate assessments of the gross wave resource are a necessity. A comprehensive wave resource assessment provides a quantitative summary of the full directional wave spectra over a period of time and parameterizes the necessary data to mitigate uncertainty and risk. However, the reduction of detailed wave spectra into parametric representations inherently discards important details about the wave characteristics and introduces uncertainty. The goal of a resource assessment is to quantify the wave resource as completely as possible, through specific parameterizations, and minimize the associated uncertainty. This chapter provides an overview of in-situ and remote wave measurement data collection techniques, and an introduction to the dominant numerical wave propagation models used for wave resource assessments (WAM, WWIII, SWAN, TOMAWAC, and MIKE-21 SW). An explanation of standard oceanographic wave parameterizations and an in-depth review of dominant resource assessment methodologies provide a baseline assessment. Several higher fidelity assessment techniques, extreme value analyses, and additional environmental factors are subsequently presented, and the impacts on wave energy converter power production estimates are quantified. Finally, an introduction to marine spatial planning provides a framework within which to identify locations of interest for wave energy conversion. This chapter provides a detailed framework for baseline and higher-order resource assessment methodologies to provide policymakers with the necessary resource and uncertainty data to help nurture the nascent industry, provide developers with compulsory knowledge required to design wave energy converters, and allow utilities to design large-scale energy systems for grid integration of wave-generated energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ayat, B. (2013). Wave power atlas of Eastern Mediterranean and Aegean Seas. Energy, 54, 251–262.

    Article  Google Scholar 

  • Babarit, A. (2005). Optimisation hydrodynamique et controle optimal d’un recuperateur de l’energie des vagues,” L’Ecole Centrale de Nantes et l’Universite de Nantes.

    Google Scholar 

  • Babarit, A., Hals, J., Muliawan, M. J., Kurniawan, A., Moan, T., & Krokstad, J. (2012). Numerical benchmarking study of a selection of wave energy converters. Renewable Energy, 41, 44–63.

    Article  Google Scholar 

  • Bailey, H., Robertson, B., Buckham, B. J. (2016). Optimizing wecs for canadian waters.

    Google Scholar 

  • Bailey, H., Robertson, B., & Buckham, B. (2016). Quantifying and discritizing the uncertainty in power production estimates of a Wave Energy Converter. In Marine Energy Technology Symposium (METS), pp. 4–6.

    Google Scholar 

  • Beatty, S. (2016). Experimental comparison of self-reacting point absorber WEC designs.

    Google Scholar 

  • Beatty, S. J., Buckham, B., & Wild, P. (2007). Modeling, design and testing of a two-body heaving wave energy converter. In Proceedings of the International Society of Offshore and Polar Engineers, ISOPE 2007, Lisbon Portugal.

    Google Scholar 

  • Benoit, M., Marcos, F., & Becq, F. (1996). Development of a third generation shallow-water wave model with unstructured spatial meshing. In Proceedings of the 25th International Conference Coastal Engineering (pp. 465–478).

    Google Scholar 

  • Boelen, M. A., Bishop, I., & Pettit, C. (2010). Selecting offshore renewable energy futures for victoria. Ekscentar, 13, 63–67.

    Google Scholar 

  • Boukhanovsky, A. V., & Soares, C. Guedes. (2009). Modelling of multipeaked directional wave spectra. Applied Ocean Research, 31(2), 132–141.

    Article  Google Scholar 

  • Brodtkorb, P. A., Johannesson, P., Lindgren, G., Rychlik, I., & Rydacn, J. (2000). WAFO—a Matlab toolbox for analysis of random waves and loads. In Proceedings of the 10th International Offshore and Polar Engineering Conference, Vol. 3, pp. 343–350.

    Google Scholar 

  • Cahill, B., & Lewis, A. W. (2014). Wave period ratios and the calculation of wave power. In 2nd Marine Energy Technology Symposium, pp. 1–10.

    Google Scholar 

  • Choi, J., Lim, C. H., Lee, J. I., & Yoon, S. B. (2009). Evolution of waves and currents over a submerged laboratory shoal. Coastal Engineering, 56(3), 297–312.

    Article  Google Scholar 

  • Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An introduction to statistical modeling of extreme values (Vol. 208). Springer.

    Google Scholar 

  • Cornett, A. (2006). Inventory of Canada’s marine renewable energy resources. National Research Council—Canadian Hydraulics Centre, Ottawa, K1A 0R6, Canada, Report.

    Google Scholar 

  • Cornett, A., & Zhang, J. (2008). Nearshore wave energy resources, Western Vancouver Island, B.C. Canadian Hydraulics Centre, Report.

    Google Scholar 

  • Dallman, A., & Neary, V. (2014). Initial characterization of the wave resource at several high energy U.S. Sites. In 2nd Marine Energy Technology Symposium (Vol. 3, pp. 1–7).

    Google Scholar 

  • DHI. (2012). Mike 21 Spectral Waves FM—Short Description.

    Google Scholar 

  • DHI. (2016). MIKE, Powered by DHI, 2016. Retrieved August 12, 2016, from https://www.mikepoweredbydhi.com/.

  • DNV. (2010). DNV-RP-C205: Environmental conditions and environmental loads. Norw. DetNorskeVeritas.

    Google Scholar 

  • Dunnett, D., & Wallace, J. S. (2009). Electricity generation from wave power in Canada. Renewable Energy, 34(1), 179–195.

    Article  Google Scholar 

  • Dykes, J. D., Hsu, Y. L., & Rogers, W. E. (2002). The development of an operational SWAN model for NGLI. In Ocean. ’02 MTS/IEEE (Vol. 2, pp. 859–866).

    Google Scholar 

  • Eckert-Gallup, A. C., Sallaberry, C. J., Dallman, A. R., & Neary, V. S. (2016). Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states. Ocean Engineering, 112, 307–319.

    Article  Google Scholar 

  • ECMWF. (2013). Part VII : ECMWF Wave Model IFS DOCUMENTATION—PART VII : ECMWF WAVE MODEL.

    Google Scholar 

  • EPRI. (2011). EPRI USA Waters Wave Resource Assessment, 2011.

    Google Scholar 

  • Falnes, J. (2002). Ocean waves and oscillating systems: Linear interactions including wave energy extraction. Cambridge University Press.

    Google Scholar 

  • Folley, M., & Whittaker, T. J. T. (2009). Analysis of the nearshore wave energy resource. Renewable Energy, 34(7), 1709–1715.

    Article  Google Scholar 

  • Folley, M., & Whittaker, T. (2011). The adequacy of phase-averaged models for modelling wave farms. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, pp. 663–671.

    Google Scholar 

  • Fusco, F., Nolan, G., & Ringwood, J. V. (2010). Variability reduction through optimal combination of wind/wave resources—An Irish case study. Energy, 35(1), 314–325.

    Article  Google Scholar 

  • Gerling, T. W. (1991). Partitioning sequences and arrays of directional ocean wave spectra into component wave systems. Journal of Atmospheric and Oceanic Technology, 9, 444–458.

    Article  Google Scholar 

  • Goda, Y. (2009). Random seas and design of maritime structures. In Advanced Series on Ocean Engineering (Vol. 33, p. 708). World Scientific.

    Google Scholar 

  • Hanson, J. L., & Phillips, O. M. (2001). Automated analysis of ocean surface directional wave spectra. Journal of Atmospheric and Oceanic Technology, 18(2), 277–293.

    Article  Google Scholar 

  • Haver, S., & Winterstein, S. R. (2010). Environmental contour lines—a method for estimating long term extremes by a short term analysis. Transactions of the Society of Naval Architects and Marine Engineers, 116(October), 116–127.

    Google Scholar 

  • Hemer, M. A., & Griffin, D. A. (2010). The wave energy resource along Australia’s Southern margin Jounal of Renewable Sustainable Energy, 2(4).

    Google Scholar 

  • Hiles, C. E., Buckham, B. J., Wild, P., & Robertson, B. (2014). Wave energy resources near Hot Springs Cove, Canada. Renewable Energy, 71, 598–608.

    Article  Google Scholar 

  • Hiles, C., David, A., Guitierrez, D. A., Beatty, S., Buckham, B., & Bc, V. (2015). A case study on the matrix approach to WEC performance characterization. In European Wave and Tidal Energy Conference.

    Google Scholar 

  • Holthuijsen, L. H. (2007). Waves in oceanic and coastal waters. Cambridge University Press.

    Google Scholar 

  • Hughes, M. G., & Heap, A. D. (2010). National-scale wave energy resource assessment for Australia. Renewable Energy, 35(8), 1783–1791.

    Article  Google Scholar 

  • Iglesias, G., & Carballo, R. (2011). Choosing the site for the first wave farm in a region: a case study in the Galician Southwest (Spain). Energy, 36(9), 5525–5531.

    Article  Google Scholar 

  • International Electrotechnical Commission T C 114. (2015). IEC TS 62600-100 Technicial Specification—Part 101: Wave energy resource assessment and characterization. Standard, 2015.

    Google Scholar 

  • JCOMM. (2014). Joint WMO-IOC technical commission for oceanography and marine meteorology wave measurement evaluation and test. Retrieved from http://www.jcomm.info/index.php?option=com_content&view=article&id=62.

  • Kerbiriou, M., Prevosto, M., Maisondieu, C., Clement, A., & Babarit, A. (2007). Influence of Sea-States description on wave energy production assessment. In European Wave and Tidal Energy Conference.

    Google Scholar 

  • Kim, C.-K., Toft, J. E., Papenfus, M., Verutes, G., Guerry, A. D., Ruckelshaus, M. H., et al. (2012). Catching the right wave: Evaluating wave energy resources and potential compatibility with existing marine and coastal uses. PLoS ONE, 7(11), e47598.

    Article  Google Scholar 

  • Lenee-Bluhm, P., Paasch, R., & Özkan-Haller, H. T. (2011). Characterizing the wave energy resource of the US Pacific Northwest. Renewable Energy, 36(8), 2106–2119.

    Article  Google Scholar 

  • Liberti, L., Carillo, A., & Sannino, G. (2013). Wave energy resource assessment in the Mediterranean, the Italian perspective. Renewable Energy, 50, 938–949.

    Article  Google Scholar 

  • Luczko, E., Bailey, H., Robertson, B., Hiles, C., Buckham, B. (2016). Assimilating a time-domain representation of a wave energy converter into a spectral wave model. In International Conference on Offshore Mechanics and Arctic Engineering, 1–10.

    Google Scholar 

  • Mackay, E. B. L., Bahaj, A. S., & Challenor, P. G. (2010a). Uncertainty in wave energy resource assessment. Part 1: Historic data. Renewable Energy, 35(8), 1792–1808.

    Article  Google Scholar 

  • Mackay, E. B. L., Bahaj, A. S., & Challenor, P. G. (2010b). Uncertainty in wave energy resource assessment. Part 2: Variability and predictability. Renewable Energy, 35(8), 1809–1819.

    Article  Google Scholar 

  • Monardez, P., Acuña, H., & Scott, D. (2008). Evaluation of the potential of wave energy in Chile. Omae, 2008–57887, 1–9.

    Google Scholar 

  • NOAA. (2016). Station 46206- La Perouse Bank. http://www.ndbc.noaa.gov/station_page.php?station=46206.

  • Ochi, M. K., & Hubble, E. N. (1976). On six-parameter wave spectra. In Proceedings of the 15th International Conference on Coastal Engineering, Vol. 1, pp. 301–328.

    Google Scholar 

  • OES. (2015). Ocean Energy Systems: Annual Report 2015.

    Google Scholar 

  • Ortiz, J. P., Bailey, H., Buckham, B., & Crawford, C. (2015). Surrogate based design of a mooring system for a self-reacting point absorber. In Proceedings of the International Offshore and Polar Engineering Conference, pp. 936–943.

    Google Scholar 

  • Phillips, J., Cruz, J., Holbrow, R., Parkes, J., & Rawlinson-Smith, R. (2008). Defining the long-term wave resource at wave hub: The role of measurements and models. In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, pp. 645–652.

    Google Scholar 

  • Piche, S., Cornett, A., Baker, S., & Nistor, I. (2015). Validation of the IEC technical specification for wave energy resource assessment. In European Wave and Tidal Energy Conference, 2015, p. 10.

    Google Scholar 

  • Portilla, J., Ocampo-Torres, F. J., & Monbaliu, J. (2009). Spectral partitioning and identification of wind sea and swell. Journal of Atmospheric and Oceanic Technology, 26(1), 107–122.

    Article  Google Scholar 

  • Reikard, G., Robertson, B., Buckham, B., Bidlot, J.-R., & Hiles, C. (2015). Simulating and forecasting ocean wave energy in western Canada. Ocean Engineering, 103, 223–236.

    Article  Google Scholar 

  • Robertson, B., Hiles, C., & Buckham, B. (2013). Characterizing the Nearshore wave energy resource on the West Coast of Vancouver Island. Renewable Energy.

    Google Scholar 

  • Robertson, B., Hiles, C., & Buckham, B. (2014a). Characterizing the near shore wave energy resource on the west coast of Vancouver Island, Canada. Renewable Energy, 71, 665–678.

    Article  Google Scholar 

  • Robertson, B., Bailey, H., Clancy, D., Ortiz, J., & Buckham, B. (2014). Influence of wave resource assessment methods of wave power production estimates. In International Conference on Ocean Energy, pp. 1–19.

    Google Scholar 

  • Robertson, B., Lin, Y., & Buckham, B. (2015). Application of triple collocation technique to wave resource assessments and wave energy converter energy production. In 14th Workshop on Wave Hindcasting and Forecasting (p. 23).

    Google Scholar 

  • Robertson, B., Clancy, D., Bailey, H., & Buckham, B. (2015). Improved energy production estimates from wave energy converters through spectral partitioning of wave conditions (p. 8). International Society of Offshore and Polar Engineers.

    Google Scholar 

  • Robertson, B., Bailey, H., Clancy, D., Ortiz, J., & Buckham, B. (2016). Influence of wave resource assessment methodology on wave energy production estimates. Renewable Energy, 86, 1145–1160.

    Article  Google Scholar 

  • Ruehl, K. (2013). Development of SNL-SWAN. In European Wave and Tidal.

    Google Scholar 

  • Rusu, E., & Soares, C. Guedes. (2009). “Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore”. Renewable Energy, 34(6), 1501–1516.

    Article  Google Scholar 

  • Rusu, L., & Soares, C. G. (2012). Wave energy assessments in the Azores islands. Renewable Energy, 45, 183–196.

    Article  Google Scholar 

  • Rute Bento, A., Rusu, E., Martinho, P., & Guedes Soares, C. (2016). Assessment of the changes induced by a wave energy farm in the nearshore wave conditions. Computers & Geosciences.

    Google Scholar 

  • Saulnier, J. B., Clment, A., Falco, A. F. D. O., Pontes, T., Prevosto, M., & Ricci, P. (2011). Wave groupiness and spectral bandwidth as relevant parameters for the performance assessment of wave energy converters. Ocean Engineering, 38(1), 130–147.

    Article  Google Scholar 

  • Sierra, J. P., Martín, C., Mösso, C., Mestres, M., & Jebbad, R. (2016). Wave energy potential along the Atlantic coast of Morocco. Renewable Energy, 96, 20–32.

    Article  Google Scholar 

  • Silva-Gonzlez, F., Heredia-Zavoni, E., & Montes-Iturrizaga, R. (2013). Development of environmental contours using Nataf distribution model. Ocean Engineering, 58, 27–34.

    Article  Google Scholar 

  • Smith, H. C. M., Pearce, C., & Millar, D. L. (2012). Further analysis of change in nearshore wave climate due to an offshore wave farm: An enhanced case study for the Wave Hub site. Renewable Energy, 40(1), 51–64.

    Article  Google Scholar 

  • Stopa, J. E., Cheung, K. F., & Chen, Y.-L. (2011). Assessment of wave energy resources in Hawaii. Renewable Energy, 36(2), 554–567.

    Article  Google Scholar 

  • Stoutenburg, E. D., Jenkins, N., & Jacobson, M. Z. (2010). Power output variations of co-located offshore wind turbines and wave energy converters in California. Renewable Energy, 35(12), 2781–2791.

    Article  Google Scholar 

  • SWAN. (2006). SWAN scientific and technical documentation. Delft University of Technology, The Netherlands, Computer Program 41.01A, 2006.

    Google Scholar 

  • Telemac-Mascaret. (2015). Open TELEMAC-MASCARET, 2015. Retrieved March 31, 2016, from http://www.opentelemac.org/.

  • Tolman, H. L. (2014). User manual and system documentation of WAVEWATCH III version 4.18.

    Google Scholar 

  • Torsethaugen, K., & Haver, S. (2004). Simplified double peak spectral model for ocean waves. In Proceedings of the International Offshore and Polar Engineering Conference, pp. 76–84.

    Google Scholar 

  • van Nieuwkoop, J. C. C., Smith, H. C. M., Smith, G. H., & Johanning, L. (2013). Wave resource assessment along the Cornish coast (UK) from a 23-year hindcast dataset validated against buoy measurements. Renewable Energy, 58, 1–14.

    Article  Google Scholar 

  • Vanem, E., & Bitner-Gregersen, E. M. (2012). Stochastic modelling of long-term trends in the wave climate and its potential impact on ship structural loads. Applied Ocean Research, 37, 235–248.

    Article  Google Scholar 

  • Vanem, E., & Bitner-Gregersen, E. M. (2015). Alternative environmental contours for marine structural design—a comparison study. Journal of Offshore Mechanics and Arctic Engineering, 137(5), 51601.

    Article  Google Scholar 

  • Veritas, D. N. (2010). Environmental conditions and environmental loads. Dnv, 9–123.

    Google Scholar 

  • WAMDI. (1988). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12), 1775–1810.

    Google Scholar 

  • WCWI. (2016). WCWI Wave Measurement Buoys: Amphitrite Bank, 2016. http://www.uvic.ca/research/projects/wcwi/research/buoy-information/beverley/index.php.

  • Winterstein, S. R., Ude, T. C., Cornell, C. A., Bjerager, P. , & Haver, S. (1993). Environmental parameters for extreme response: Inverse FORM with omission factors. In Proceedings of the 6th International Conference on Structural Safety and Reliability, Innsbruck, Austria.

    Google Scholar 

  • Zheng, C. W., Pan, J., & Li, J. X. (2013). Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Engineering, 65, 39–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryson Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Robertson, B. (2017). Wave Energy Assessments: Quantifying the Resource and Understanding the Uncertainty. In: Yang, Z., Copping, A. (eds) Marine Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-53536-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53536-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53534-0

  • Online ISBN: 978-3-319-53536-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics