Skip to main content

Slope Stability Hazard Assessment Using 3D Remote Sensing and Field Sketching Techniques Along Sohag-Red Sea-Cairo Highway, Egypt

  • Conference paper
  • First Online:
Book cover Advancing Culture of Living with Landslides (WLF 2017)

Included in the following conference series:

Abstract

Coupling of 3D remote sensing images, Field sketching and field investigation represent interesting techniques to understand and evaluate the slope stability problems along rock cut slopes. These methods were applied along the highway section that connects the Sohag, Red Sea, and Cairo governorates on the eastern plateau, Egypt. It is one of the most used highways in Egypt during recent years and represents the backbone of Egyptian transportation and commercial traffic. This Highway passes through a difficult zone of rock cut slopes located 20 km north of Sohag city. Serious stability and rockfall and/or slides issues have been recognized along this section. The applied methods are considered to be good and are new techniques in understanding different types of slope stability hazards such as debris flows, rockfalls/sliding and determining the most relevant factors affecting slope stability problems. In addition, the potential instability zones were mapped. These techniques also could help in remediation/mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander D (1992) On the causes of landslides: human activities, perception, and natural processes. Environ Geol Water Sci 20(3):165–179. doi:10.1007/BF01706160

    Article  Google Scholar 

  • Bellamy D, Drumm E C, Dunne W M, Mauldon M, Bateman V Rose B, Vandewater C (2003) The electronic data collection for rockfall analysis. In: Proceedings of 82nd annual meeting of the transportation research board, 12–16 Jan 2003. Washington, D.C., USA. Number 03-3136

    Google Scholar 

  • Birk RJ, Stanley T, Snyder GI, Hennig TA, Fladeland MM, Policelli F (2003) Government programs for research and operational uses of commercial remote sensing data. Remote Sens Environ 88:3–16. doi:10.1016/j.rse.2003.07.007

    Article  Google Scholar 

  • Carbonel D, Rodríguez-Tribaldos V, Gutiérrez F, Galve JP, Guerrero J, Zarroca M, Acosta E (2015) Investigating a damaging buried sinkhole cluster in an urban area (Zaragoza city, NE Spain) integrating multiple techniques: geomorphological surveys, DInSAR, DEMs, GPR, ERT, and trenching. Geomorphology 229:3–16. doi:10.1016/j.geomorph.2014.02.007

    Article  Google Scholar 

  • Chau KT, Sze YL, Fung MK, Wong WY, Fong EL, Chan LCP (2004) Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Comput Geosci 30:429–443. doi:10.1016/j.cageo.2003.08.013

    Article  Google Scholar 

  • Cooper AH (1998) Subsidence hazards caused by the dissolution of Permian gypsum in England: geology, investigation and remediation. Geol Soc Lond Eng Geol Spec Publ 15:265–275. doi:10.1144/GSL.ENG.1998.015.01.27

    Google Scholar 

  • Costa J E, Baker VR (1981) Surficial geology: building with the earth. Wiley, New York. 498 p

    Google Scholar 

  • De Blasio FV (2011) Introduction to the physics of landslides: lecture notes on the dynamics of mass wasting. Springer, Netherlands. ISBN 978-94-007-1122-8, 408p

    Google Scholar 

  • De Vita1 P, Cevasco A, Cavallo C (2012) Detailed rock failure susceptibility mapping in steep rocky coasts by means of non-contact geostructural surveys: the case study of the Tigullio Gulf (Eastern Liguria, Northern Italy). Nat Hazards Earth Syst Sci. 12:867–880. doi:10.5194/nhess-12-867-2012

  • El-Naggar ZR (1970) On a proposed Lithostratigraphic subdivision for the late cretaceous-lower early paleogene succession in the Nile Valley, Egypt. U.A.R. 7th Arab Petrol. Congr. Kuweit, 64(B-3). 50p

    Google Scholar 

  • Gutiérrez F, Soldati M, Audemard F, Bălteanu D (2010) Recent advances in landslide investigation: issues and perspectives. Geomorphology 124(3):95–101

    Article  Google Scholar 

  • Hampton MA, Griggs GB, Edil TB, Guy DE, Kelley JT, Komar PD, Mickelson DM, Shipman HM (2004) Processes that govern the formation and evolution of coastal cliffs. In: Hampton MA, Griggs GB (eds) Formation, evolution, and stability of coastal cliffs—status and trends. U.S. Geological Survey Professional Paper, vol 1693, pp 7–38

    Google Scholar 

  • Haugerud RA, Harding DJ, Johnson SY, Harless JL, Weaver CS, Sherrod BL (2003) High-resolution LIDAR topography of the Puget Lowland, Washington. GSA Today 13(6):4–10

    Article  Google Scholar 

  • Huggel C, Kääb A, Salzmann N (2004) GIS-based modeling of glacial hazards and their interactions using Landsat-TM and IKONOS imagery. Norw J Geogr 58(2):61–73. doi:10.1080/00291950410002296

    Google Scholar 

  • Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rockfalls and rock slides along the main transportation corridors of southwestern British Columbia. Can Geotech J 36:224–238. doi:10.1139/t98-106

    Article  Google Scholar 

  • Jones C L, Higgins J D, Andrew R D (2000) Colorado rockfall simulation program, version 4.0. Colorado Department of Transportation, Denver, Colorado, 127 p

    Google Scholar 

  • Kääb A (2000) Photogrammetry for early recognition of high mountain hazards: new techniques and applications. Phys Chem Earth 25(9):765–770. doi:10.1016/S1464-1909(00)00099-X

    Article  Google Scholar 

  • Keheila EA, Soliman HA, El-Ayyat AAM (1991) Litho-and biostratigraphy of the Lower Eocene carbonate sequence in Upper Egypt: evidence for uplifting and resedimentation of the Paleocene section. J Afr Earth Sci 11(1–2):151–168

    Google Scholar 

  • Khalily M, Lashkaripour GR, Ghafoori M, Khanehbad M, Dehghan P (2013) Durability characterization of Abderaz Marly Limestone in the Kopet- Dagh Basin, NE of Iran. Int J Emerg Technol Adv Eng 3(5):50–56

    Google Scholar 

  • Laprade WT, Kirkland TE, Nashem WD, Robertson CA (2000) Seattle landslide study. Shannon and Wilson, Inc. (Internal Report W-7992-01). 164p

    Google Scholar 

  • Leeder MR, Stewart MD (1996) Fluvial incision and sequence stratigraphy: alluvial responses to relative sea-level fall and their detection in the geological record. Geol Soc Lond Spec Publ 103(1):25–39

    Article  Google Scholar 

  • Lim M, Petley DN, Rosser NJ, Allison RJ, Long AJ, Pybus D (2005) Combined digital photogrammetry and time-of-flight laser scanning for monitoring cliff evolution. Photogram Rec 20:109–129. doi:10.1111/j.1477-9730.2005.00315.x

    Article  Google Scholar 

  • Maerz NH, Youssef A, Fennessey TW (2005) New risk-consequence rockfall hazard rating system for Missouri highways using digital image analysis. Environ Eng Geosci 11(3):229–249. doi:10.2113/11.3.229

    Article  Google Scholar 

  • Maerz NH, Youssef AM, Pradhan B, Bulkhi A (2015) Remediation and mitigation strategies for rock fall hazards along the highways of Fayfa Mountain, Jazan Region, Kingdom of Saudi. Arab J Geosci 8(5):2633–2651. doi:10.1007/s12517-014-1423-x

    Article  Google Scholar 

  • Marcelino EV, Fonseca LMG, Ventura F, Rosa ANCS (2003) Evaluation of IHS, PCA and wavelet transform fusion techniques for the identification of landslide scars using satellite data. Anais Simpósio Brasileiro de Sensoriamento Remoto, 11th. Belo Horizonte, Brasil, pp 5–10

    Google Scholar 

  • Pack RT, Boie K (2002) Utah rockfall hazards inventory, phase I. Utah Department of Transportation, Research Division. (Research Report UT-03.01)

    Google Scholar 

  • Raju R, Saibaba J (1999) Landslide hazard zonation mapping using remote sensing and geographic information system, IEEE, International geoscience and remote sensing symposium, June 28–July 2, 1999. Hamburg, Germany

    Google Scholar 

  • Santi P, Russell CP, Higgins JD, Spriet JI (2009) Modification and statistical analysis of the Colorado rockfall hazard rating system. Eng Geol 104:55–65

    Article  Google Scholar 

  • Said R (1961) Tectonic framework of Egypt and its influence on distribution of foraminifera. Am Asso Petrol Geol Bull 45:198–218

    Google Scholar 

  • Salzmann N, Kääb A, Huggel C, Allgöwer B, Haeberli W (2004) Assessment of the hazard potential of ice avalanches using remote sensing and GIS-modeling. Norw J Geogr 58(2):74–84. doi:10.1080/00291950410006805

    Google Scholar 

  • Santi PM (1998) Improving the jar slake, slake index, and slake durability tests for shales. Environ Eng Geosci 3:385–396

    Article  Google Scholar 

  • Schulz WH (2007) Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Eng Geol 89:67–87. doi:10.1016/j.enggeo.2006.09.019

    Article  Google Scholar 

  • Sturznegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182. doi:10.1016/j.enggeo.2009.03.004

    Article  Google Scholar 

  • Troost KG, Booth DB, Wisher AP, Shimel SA (2005) The geologic map of Seattle-A progress report. U.S. Geological Survey. (Open-file Report 2005–1252)

    Google Scholar 

  • Vandewater CJ, Dunne WM, Mauldon M, Drumm EC, Bateman V (2005) Classifying and assessing the geologic contribution to rockfall hazard. Environ Eng Geosci 11(2):141–154. doi:10.2113/11.2.141

    Article  Google Scholar 

  • Wait TC (2001) Characteristics of deep-seated landslides in Seattle, Washington. MS thesis, Colorado School of Mines, USA. 141p

    Google Scholar 

  • Yamaguchi Y, Tanaka S, Odajima T, Kamai T, Tsuchida S (2003) Detection of a landslide movement as geometric misregistration in image matching of SPOT HRV data of two different dates. Int J Remote Sens 24:3423–3534

    Google Scholar 

  • Youssef AM, Pradhan B, Gaber AFD, Buchroithner MF (2009) Geomorphological hazards analysis along the Egyptian Red Sea coast between Safaga and Quseir. Nat Hazards Earth Syst Sci 9:751–766. doi:10.5194/nhess-9-751-2009

    Article  Google Scholar 

  • Youssef AM, Maerz HN, Al-Otaibi AA (2012) Stability of rock slopes along Raidah escarpment road, Asir Area, Kingdom of Saudi Arabia. J Geogr Geol 4(2):48–70. doi:10.5539/jgg.v4n2p48

    Google Scholar 

  • Youssef AM, Al-Harbi HM, Gutiérrez F, Zabramwi YA, Bulkhi AB, Zahrani SA, Bahamil AM, Zahrani AJ, Otaibi ZA, El-Haddad BA (2016) Natural and human-induced sinkhole hazards in Saudi Arabia: distribution, investigation, causes and impacts. Hydrogeol J 24(3):625–644. doi:10.1007/s10040-015-1336-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Youssef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

El-Haddad, B.A., Youssef, A.M., El-Shater, AH., El-Khashab, M.H. (2017). Slope Stability Hazard Assessment Using 3D Remote Sensing and Field Sketching Techniques Along Sohag-Red Sea-Cairo Highway, Egypt. In: Mikos, M., Tiwari, B., Yin, Y., Sassa, K. (eds) Advancing Culture of Living with Landslides. WLF 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-53498-5_47

Download citation

Publish with us

Policies and ethics