Skip to main content

Influences of Rheometer Size and the Grain Size on Rheological Parameters of Debris Flow

  • Conference paper
  • First Online:

Abstract

Debris flows are non-Newtonian fluids. Theirs rheological parameters depends on the volume concentration, grain size composition, fines content and fines plasticity. To get realistic data for modelling of debris flows, the rheological parameters had to be measured at different volume concentrations, taking into account the whole grain size distribution. Rheometers for fluids are limited with the gap size and usually only fine grained suspensions could be investigated. The results measured in such device on coarse grained soils may not be representative. The paper presents the study in which two shear rate controlled coaxial cylinder rheometers were used to investigate the influence of maximum grain size to the rheological parameters of the Stože debris flow: the larger ConTec Viscometer 5, in which the maximum grain size is 22.4 mm and the smaller Brookfield DV3T HB rheometer. Rheological parameters obtained by using both devices were compared based on water content, volume concentration and maximum grain size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bisantino T, Fischer P, Gentile F (2010) Rheological characteristics of debris-flow material in South-Gargano watersheds. Nat Hazards 54(2):209–223. doi:10.1007/s11069-009-9462-4

    Article  Google Scholar 

  • Brookfield Engineering Labs., Inc. (2014) More solutions to sticky problems

    Google Scholar 

  • Coussot P, Laigle D, Arattano M, Deganutti A, Marchi L (1998) Direct determination of rheological characteristics of debris flow. J Hydraul Eng 124(8):865–868. doi:10.1061/(ASCE)0733-9429(1998)124:8(865)

    Article  Google Scholar 

  • Coussot P, Piau J-M (1995) A large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions. J Rheol 39(1):105. doi:10.1122/1.550693

    Article  Google Scholar 

  • Četina M, Rajar R, Hojnik T, Zakrajšek M, Krzyk M, Mikoš M (2006) Case study: numerical simulations of debris flow below stože, Slovenia. J Hydraul Eng 132(2):121–130. doi:10.1061/(ASCE)0733-9429(2006)132:2(121)

    Article  Google Scholar 

  • Feys D, Wallevik JE, Yahia A, Khayat KH, Wallevik OH (2013) Extension of the reiner-riwlin equation to determine modified bingham parameters measured in coaxial cylinders rheometers. Mater Struct 46(1–2):289–311. doi:10.1617/s11527-012-9902-6

    Article  Google Scholar 

  • Ilstad T, Elverhøi A, Issler D, Marr JG (2004) Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Mar Geol 213(1–4):415–438. doi:10.1016/j.margeo.2004.10.017

    Article  Google Scholar 

  • Jeong SW (2006) Influence of physico-chemical characteristics of fine-grained sediments on their rheological behavior. Ph.D. Thesis. Faculte de Sciences et Genie Universite Laval, Quebec

    Google Scholar 

  • Jeong SW (2013) The viscosity of fine-grained sediments: a comparison of low- to medium-activity and high-activity clays. Eng Geol 154:1–5

    Article  Google Scholar 

  • Jeong SW (2014) The effect of grain size on the viscosity and yield stress of fine-grained sediments. J Mt Sci 11(1):31–40

    Article  Google Scholar 

  • Jeong SW, Leroueil S, Locat J (2009) Applicability of power law for describing the rheology of soils of different origins and characteristics. Can Geotech J 46(9):1011–1023

    Article  Google Scholar 

  • Jeong SW, Locat J, Leroueil S, Malet J-P (2010) Rheological properties of fine-grained sediment: the roles of texture and mineralogy. Can Geotech J 47(10):1085–1100. doi:10.1139/T10-01

  • Lenart S (2006) Deformation characteristics of lacustrine carbonate silt in the Julian Alps. Soil Dyn Earthq Eng 26(2–4):131–142. doi:10.1016/j.soildyn.2005.02.010

    Article  Google Scholar 

  • Locat J (1997) Normalized rheological behaviour of fine muds and their flow properties in a pseudoplastic regime. In: Proceedings of 1st international conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, San Francisco, California, United States, pp 260–269

    Google Scholar 

  • Locat J, Demers D (1988) Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays. Can Geotech J 25(4):799–806. doi:10.1139/t88-088

    Article  Google Scholar 

  • Majes B, Petkovšek A, Logar J (2002) The comparisson of material properties of debris flows from stože, Slano Blato and Strug landslide. Geologija 45(2):457–463. doi:10.5474/geologija.2002.048

    Article  Google Scholar 

  • Mikoš M, Četina M, Brilly M (2004) Hydrologic conditions responsible for triggering the Stože landslide, Slovenia. Eng Geol 73(3–4):193–213. doi:10.1016/j.enggeo.2004.01.011

    Google Scholar 

  • Parsons JD, Whipple KX, Simoni A (2001) Experimental study of the grain-flow, fluid-mud transition in debris flows. J Geol 109(4):427–447. doi:10.1086/320798

    Article  Google Scholar 

  • Petkovšek A (2002) Pomen geotehničnih raziskav pri preučevanju drobirskih tokov in prve slovenske izkušnje. Gradbeni Vestnik 51(12):346–361

    Google Scholar 

  • Phillips CJ, Davies TRH (1991) Determining rheological parameters of debris flow material. Geomorphology 4(2):101–110. doi:10.1016/0169-555X(91)90022-3

    Article  Google Scholar 

  • Schatzmann M, Bezzola GR, Minor H-E, Windhab EJ, Fischer P (2009) Rheometry for large-particulated fluids: analysis of the ball measuring system and comparison to debris flow rheometry. Rheol Acta 48(7):715–733. doi:10.1007/s00397-009-0364-x

    Article  Google Scholar 

  • Schatzmann M, Fischer P, Bezzola GR (2003) Rheological behavior of fine and large particle suspensions. J Hydraul Eng 129(10):796–803. doi:10.1061/(ASCE)0733-9429(2003)129:10(796)

    Article  Google Scholar 

  • Smolar J, Maček M, Petkovšek A (2016) Rheological properties of marine sediments from the Port of Koper. Acta Geotech Slovenica, (to be published)

    Google Scholar 

  • Whipple KX, Dunne T (1992) The influence of debris-flow rheology on fan morphology, Owens Valley, California. Geol Soc Am Bull 104(7):887–900. doi:10.1130/0016-7606(1992)104<0887:TIODFR>2.3.CO;2

    Article  Google Scholar 

  • Yang H, Wei F, Hu K, Zhou G, Lyu J (2015) Comparison of rheometric devices for measuring the rheological parameters of debris flow slurry. J Mt Sci 12(5):1125–1134. doi:10.1007/s11629-015-3543-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Maček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Maček, M., Smolar, J., Petkovšek, A. (2017). Influences of Rheometer Size and the Grain Size on Rheological Parameters of Debris Flow. In: Mikos, M., Tiwari, B., Yin, Y., Sassa, K. (eds) Advancing Culture of Living with Landslides. WLF 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-53498-5_46

Download citation

Publish with us

Policies and ethics