Skip to main content

Rock Avalanche Sedimentology—Recent Progress

  • Conference paper
  • First Online:
Book cover Advancing Culture of Living with Landslides (WLF 2017)

Included in the following conference series:

Abstract

Since Yarnold and Lombard (Field trip guidebook—Pacific section, 9–31, 1989) presented a systematic facies model for ancient rock avalanche deposits in dry climates, more landslide researchers have organized observations from one or more case studies into general sedimentological descriptions and facies models (references are provided in the main text). These recent advances show that rock avalanches are multi-facies deposits. Retention of source stratigraphy and a general three-part division of a coarse-grained, largely unfragmented upper part or carapace, a finer-grained body of diverse sedimentology, and a basal facies influenced by interactions with runout path materials are the most common observations. The greatest variation in the grain size distribution and comminution intensity occurs between the bouldery carapace and the matrix-supported interior, i.e. the body facies which constitutes the largest deposit volume. Most striking, but not surprising, is the highly heterogeneous nature of the body facies with a number of sub-facies and discontinuity layers, which must reflect highly heterogeneous states of stress within the deforming granular mass. These features within the body facies are the most important for studying those emplacement dynamics that are not affected by boundary conditions, such as runout path sediments. Where the base is exposed, a characteristic basal facies with substrate injections and/or a basal mixed zone and/or deformation features can be found, usually above a very sharp contact to the underlying, disrupted sediments. The overall commonalities of internal rock avalanche features indicate that some basic processes must act universally during their emplacement. The value of these sedimentological models and descriptions lies in contrasting universally valid features with those that are a function of unique geological, topographic, or structural settings, or which might suggest different/additional emplacement dynamics of a specific deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdrakhmatov K, Strom AL (2006) Dissected rockslide and rock avalanche deposits; Tien Shan, Kyrgyzstan. In: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failure. Nato Sci Ser IV, Earth Environ Sci 49:551–570

    Google Scholar 

  • Abele G (1974) Bergstürze in den Alpen, ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissen-schaftliche Vereinshefte 25:230p

    Google Scholar 

  • Adushkin VV (2006) Mobility of rock avalanches triggered by underground nuclear explosions. In: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failure. Nato Sci Ser IV, Earth Environ Sci 49:267–284

    Google Scholar 

  • Blair TC (1999) Form, facies, and depositional history of the North Long John rock avalanche, Owens Valley, California. Can J Earth Sci 26:855–870

    Article  Google Scholar 

  • Brideau MA, Procter JN (2015) Discontinuity orientation in jigsaw clasts from volcanic debris avalanche deposits and implications for emplacement mechanism. GeoQuébec, 20–23 Sept 2015, Abstract 614

    Google Scholar 

  • Capra L, Macías JL, Scott KM, Abrams M, Garduño-Monroy VH (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico—behavior, and implications for hazard assessment. J Volcanol Geoth Res 113(1–2):81–110

    Article  Google Scholar 

  • Charrière M, Humair F, Froese C, Jaboyedoff M, Pedrazzini A, Longchamp C (2015) From the source area to the deposit: collapse, fragmentation and propagation of the Frank Slide. GSA Bull 128(1–2):332–351

    Google Scholar 

  • Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res 112:23p

    Article  Google Scholar 

  • Davies TR, McSaveney MJ (2004) Dynamic fragmentation in landslides: application to natural dam stability. In: Evans SG, Strom AL (eds) Abstract volume, NATO advanced research workshop: security of natural and artificial rockslide dams. Kyrgyzstan, Bishkek, pp 7–13

    Google Scholar 

  • Davies TR, McSaveney MJ, Kelfoun K (2010) Runout of the Socompa volcanic debris avalanche, Chile: a mechanical explanation for low basal shear resistance. Bull Volc 72(8):933–944

    Article  Google Scholar 

  • Davies TR, McSaveney MJ (2012) Mobility of long-runout rock avalanches. In: Clague JJ, Stead D (eds) Landslides—types, mechanisms, and modeling. Cambridge University Press, UK, pp 50–59

    Chapter  Google Scholar 

  • Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path material and comparison to rock avalanche events. Earth Surf Proc Land 37:1527–1541

    Article  Google Scholar 

  • Dufresne A, Davies TR, McSaveney MJ (2009) Influence of runout-path material on emplacement of the Round Top rock avalanche, New Zealand. Earth Surf Proc Land 35:190–201

    Google Scholar 

  • Dufresne A, Bösmeier A, Prager C (in press) Rock avalanche sedimentology—case study and review. Earth-Sci Rev

    Google Scholar 

  • Dufresne A, Dunning S (submitted) Process-dependence of grain size distributions in rock avalanche deposits

    Google Scholar 

  • Dufresne A, Prager C, Bösmeier A (2016) Insights into rock avalanche emplacement processes from detailed morpho-lithological studies at the Tschirgant deposit (Tyrol, Austria). Earth Surf Proc Land 41(5):587–602

    Article  Google Scholar 

  • Dunning S (2004) Rock avalanches in high mountains. PhD thesis, University of Luton, UK

    Google Scholar 

  • Dunning S (2006) The grain size distribution of rock avalanche deposits in valley-confined settings. Italian J Eng Geol Environ, Spec Issue 1:117–121

    Google Scholar 

  • Dunning SA, Armitage PJ (2011) The grain-size distribution of rock-avalanche deposits: implications for natural dam stability. In: Evans SG, Hermanns RL, Strom A, Scarascia-Mugnozza G (eds) Natural and artificial rockslide dams. Lect Notes Earth Sci 33:479–498

    Google Scholar 

  • Erismann TH (1979) Mechanisms of large landslides. Rock Mech 12(1):15–46

    Google Scholar 

  • Friedmann SJ (1997) Rock-avalanche elements of the Shadow Valley Basin, Eastern Mojave Desert, California: processes and problems. J Sediment Res, Sect A: Petrol Process 67(5):792–804

    Google Scholar 

  • Gates WCB (1987) The fabric of rock avalanche deposits. Bull Assoc Eng Geol 24(3):389–402

    Google Scholar 

  • Geertsema M, Hungr O, Schwab JW, Evans SG (2006) A large rockslide-debris avalanche in cohesive soils at Pink Mountain, Northeastern British Columbia, Canada. Eng Geol 83:64–75

    Article  Google Scholar 

  • Genevois R, Armento C, Tecca PR (2006) Failure mechanisms and runout behavious of three rock avalanches in the North-eastern Italian Alps. In: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failure. Nato Sci Ser IV, Earth Environ Sci 49:407–427

    Google Scholar 

  • Gruber A, Strauhal T, Prager C, Reitner JM, Brandner R, Zangerl C (2009) Die “Butterbichl-Gleitmasse”—eine fossile Massenbewegung am Südrand der Nördlichen Kalkalpen (Tirol, Österreich). Swiss Bulletin für angewandte Geologie 12(1–2):103–134

    Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 77:218p

    Google Scholar 

  • Hermanns RL, Blikra LH, Naumann M, Nilsen B, Panthi KK, Stromeyer D, Longva O (2006) Examples of multiple rock-slope collapses from Köfels (Ötz valley, Austria) and western Norway. Eng Geol 83:94–108

    Article  Google Scholar 

  • Hewitt K (2001) Catastrophic rockslides and the geomorphology of the Hunza and Gilgit river valleys, Karakoram Himalaya. Erdkunde 55:72–93

    Article  Google Scholar 

  • Hewitt K (2009) Catastrophic rock slope failures and late Quaternary developments in the Nanga Parbat-Haramosh Massif, Upper Indus basin, northern Pakistan. Quatern Sci Rev 28(11–12):1055–1069

    Article  Google Scholar 

  • Hewitt K, Clague JJ, Orwin JF (2008) Legacies of catastrophic rock slope failures in mountain landscapes. Earth-Sci Rev 87:1–38

    Article  Google Scholar 

  • Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long runout-out mechanism. Geol Soc Am Bull 116(9–10):1240–1252

    Article  Google Scholar 

  • Imre B, Laue J, Springman SM (2010) Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge. Granular Matter 12:267–285

    Article  Google Scholar 

  • Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160

    Article  Google Scholar 

  • Johnson B (1978) Blackhawk landslide, California, US. In: Voight B (ed) Rockslides and avalanches: natural phenomena, vol 1. Elsevier, Amsterdam, pp 481–504

    Chapter  Google Scholar 

  • McSaveney MJ, Davies TR (2006) Rockslides and their motion. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Progress in landslide science. Springer, Heidelberg, pp 113–133

    Google Scholar 

  • Medley EW (1994) The engineering characterization of melanges and similar block-in-matrix rocks (bimrocks). PhD thesis, University of California, Berkeley

    Google Scholar 

  • Pedrazzini A, Jaboyedoff M, Loye A, Derron MH (2013) From deep-seated slope deformation to rock avalanche: destabilization and transportation models of the Sierre landslide (Switzerland). Tectonophysics 605:149–168

    Article  Google Scholar 

  • Pollet N, Schneider J-LM (2004) Dynamic disintegration processes accompanying transport of the Holocene Flims sturzstrom (Swiss Alps). Earth Planet Sci Lett 221(1–4):433–448

    Article  Google Scholar 

  • Prager C (2010) Geologie, Alter und Struktur des Fernpass Bergsturzes und tiefgründiger Massenbewegungen in seiner Umgebung (Tirol, Österreich). PhD thesis, Univeristät Innsbruck, Austria

    Google Scholar 

  • Reznichenko NV, Davies TR, Shulmeister J, Larsen SH (2012) A new technique for identifying rock avalanche-sourced sediment in moraines and some paleoclimatic implications. Geology 49(4):319–322

    Article  Google Scholar 

  • Robinson TR, Davies TR, Reznichenko NV, De Pascale GP (2015) The extremely long-runout rock avalanche in the Trans Altai range, Pamir Mountains, southern Kyrgyzstan. Landslides 12:523–535

    Article  Google Scholar 

  • Roverato M, Cronin S, Procter J, Capra L (2015) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. GSA Bull 127(1–2):3–18

    Article  Google Scholar 

  • Schoeman C (2016) The Brusson rock avalanche, northwestern Italian Alps. MSc Thesis, University of Freiburg, Germany, 52 pp

    Google Scholar 

  • Shugar D, Clague JJ (2011) The sedimentology and geomorphology of rock avalanche deposits on glaciers. Sedimentology 58(7):1762–1783

    Article  Google Scholar 

  • Strom AL (1994) Mechanism of stratification and abnormal crushing of rockslide deposits. 7th international IAEG congress, pp 1287–1296

    Google Scholar 

  • Strom AL (2006) Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling. In: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from massive rock slope failure. Nato Sci Ser IV, Earth Environ Sci 49:305–328

    Google Scholar 

  • Vallance JW, Siebert L, Rose WI Jr, Girón JR, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geoth Res 66(1–4):337–355

    Article  Google Scholar 

  • Wassmer P, Schneider J-L, Pollet N, Schmitter-Voirin C (2004) Effects of the internal structure of a rock-avalanche dam on the drainage mechanism of its impoundment, Flims Sturzstrom and Ilanz paleo-lake, Swiss Alps. Geomorphology 61:3–17

    Article  Google Scholar 

  • Weidinger JT, Korup O (2009) Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India—implications for extreme events in mountain relief destruction. Geomorphology 103(1):57–65

    Article  Google Scholar 

  • Weidinger JT, Korup O, Munack H, Alternberger U, Dunning S, Tippelt G, Lottermoser W (2014) Giant rockslides from the inside. Earth Planet Sci Lett 389:62–73

    Article  Google Scholar 

  • Yarnold JC, Lombard JP (1989) Facies model for large rock avalanche deposits formed in dry climates. In: Colburn IP, Abbott PL, Minch J (eds) Field trip guidebook—Pacific section. Soc Econ Paleontol Mineral 62:9–31

    Google Scholar 

Download references

Acknowledgements

This research was funded by the German Research Foundation grant DU1294/2-1; project “Long-runout landslides: the influence of lithology on comminution, (micro-) structures, morphology, and runout”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Dufresne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dufresne, A. (2017). Rock Avalanche Sedimentology—Recent Progress. In: Mikos, M., Tiwari, B., Yin, Y., Sassa, K. (eds) Advancing Culture of Living with Landslides. WLF 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-53498-5_14

Download citation

Publish with us

Policies and ethics