Skip to main content

Statistical Analysis of Displacement Rate for Definition of EW Thresholds Applied to Two Case Studies

  • Conference paper
  • First Online:

Abstract

Large rockslides are characterized by complex spatial and temporal evolution, in addition to non-linear displacement trends and the significant effects of seasonal or occasional events on their behaviour. The displacement rate and the landslide evolution are intensely influenced by many factors like lithology, structural and hydrological settings, other than meteorological and climatic factors (e.g. snowmelt and rainfall). The two investigated areas are located on the Italian Alps, Mont de La Saxe landslide affects the upper part of Valle d’Aosta region (Courmayeur) and the Ruinon landslide is sited in upper Lombardia Region (Valfurva, Santa Caterina). Both landslides are sited into a larger deep-seated gravitational slope deformation (DSGSD) and they are deeply monitored with different systems: GB-InSAR, monitoring optical targets, a GPS network and multi-parametric borehole probes. We experiment the use of statistical approach for analysis of displacement rate derived from monitoring activity to support the choice of threshold values for the management of Early Warning System, by considering also the minimization of false alarms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abellán A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci 9(2):365–372

    Article  Google Scholar 

  • Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59(1):83–102

    Article  Google Scholar 

  • Antoine P, Pairis JL, Pairis B (1975) Quelques observations nouvelles sur la structure de la couverture sédimentaire interne du massif du Mont-Blanc, entre le Col du Ferret (frontiere italo-suisse) et la Tête des Fours (Savoie, France). Géologie Alpine 51:5–23

    Google Scholar 

  • Antonello G, Casagli N, Farina P, Leva D, Nico G, Tarchi D, Sieber AJ (2004) Ground-based SAR interferometry for monitoring mass movements. Landslides 1(1):21–28

    Article  Google Scholar 

  • Antolini F (2014) The use of radar interferometry and finite-discrete modelling for the analysis of rock landslides. Doctoral dissertation, PhD thesis, Politecnico di Torino

    Google Scholar 

  • Antolini F, Barla M, Gigli G, Giorgetti A, Intrieri E, Casagli N (2016) Combined finite–discrete numerical modeling of Runout of the Torgiovannetto di Assisi Rockslide in Central Italy. Int J Geomech 04016019

    Google Scholar 

  • Argand E (1916) Sur l’arc des Alpes occidentales. G. Bridel

    Google Scholar 

  • Barla G, Antolini F, Mensi E, Piovano G (2010) Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng Geol 116(3):218–235

    Article  Google Scholar 

  • Bhandari RK (1988) Special lecture: some practical lessons in the investigation and eld monitoring of landslides. In: Proceedings of 5th international symposium on landslides, Lausanne, p 14351457

    Google Scholar 

  • Bonsignore G, Borgo A, Gelati R, Montrasio A, Potenza R, Pozzi R, Schiavinato G (1969) Illustrative Notes of Italian Geolgoical Map—Paper 8—Bormio. Servizio Geologico d’Italia, Roma (in Italian)

    Google Scholar 

  • Broussolle J, Kyovtorov V, Basso M, Castiglione GFDSE, Morgado JF, Giuliani R, Oliviero F, Sammartino PF, Tarchi D (2014) MELISSA, a new class of ground based InSAR system. An example of application in support to the Costa Concordia emergency. ISPRS J Photogram Remote Sens 91:50–58

    Article  Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7(3):291–301

    Article  Google Scholar 

  • Ceriani M, Carelli M (2003) Rainfall map of Lombardy alp region since 1891 to 1990. (Carta delle precipitazioni medie, minime e massime annue del territorio alpino lombardo (registrate nel periodo 1891–1990). Regione Lombardia technical report (in Italian)

    Google Scholar 

  • Conti MA, Mariotti N, Nicosia U, Pittau P (1997) Succession of selected bioevents in the continental Permian of the Southern Alps (Italy): improvements in intrabasinal and interregional correlations. World Reg Geol 51–65

    Google Scholar 

  • Crosta GB (1989) A study of slope movements caused by heavy rainfall in Valtellina (Italy–July 1987). In: Proceedings of 6th international conference and field workshop on landslides ALPS, vol 90, pp 247–258

    Google Scholar 

  • Crosta G, Prisco CD (1999) On slope instability induced by seepage erosion. Can Geotech J 36(6):1056–1073

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2002) How to obtain alert velocity thresholds for large rockslides. Phys Chem Earth Parts A/B/C 27(36):1557–1565

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40(1):176–191

    Article  Google Scholar 

  • Crosta GB, Di Prisco C, Frattini P, Frigerio G, Castellanza R, Agliardi F (2014) Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide. Landslides 11(5):747–764

    Article  Google Scholar 

  • Dei Cas L (2006) An example of data’s analysis coming from the geological monitoring: Ruinon landslide in upper Valtellina (Sndrio). J Tech Envi Geol 3:5–19

    Google Scholar 

  • Del Ventisette CD, Garfagnoli F, Ciampalini A, Battistini A, Gigli G, Moretti S, Casagli N (2012) An integrated approach to the study of catastrophic debris-flows: geological hazard and human influence. Nat Hazards Earth Syst Sci 12(9):2907–2922

    Article  Google Scholar 

  • Di Traglia F, Intrieri E, Nolesini T, Bardi F, Del Ventisette C, Ferrigno F, Frangioni S, Frodella W, Gigli G, Lotti A, Leva D, Casagli N, Stefanelli CT (2014) The ground-based InSAR monitoring system at Stromboli volcano: linking changes in displacement rate and intensity of persistent volcanic activity. Bull Volc 76(2):1–18

    Google Scholar 

  • Frodella W, Ciampalini A, Gigli G, Lombardi L, Raspini F, Nocentini M, Scardigli C, Casagli N (2016) Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology 264:80–94

    Article  Google Scholar 

  • Froitzheim N, Schmid SM, Conti P (1994) Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubünden. Eclogae Geol Helv 87(2):559–612

    Google Scholar 

  • Fukuzono T (1985) A new method for predicting the failure time of a slope. In: Proceedings of IVth international conference on field workshop on landslides, Tokyo, pp 145–150

    Google Scholar 

  • Glade T, Nadim F (2014) Early warning systems for natural hazards and risks. Nat Hazards 70(3):1669

    Article  Google Scholar 

  • Gregnanin A, Barattieri M, Corona P, Valle M (1995) Deformation and metamorphism in the Austroalpine Oetztal-Stubai Complex (Part I); the basement. Bollettino della Societa Geologica Italiana 114(2):373–392

    Google Scholar 

  • Guermani A, Pennacchioni G (1998) Brittle precursors of plastic deformation in a granite: an example from the Mont Blanc massif (Helvetic, western Alps). J Struct Geol 20(2):135–148

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98(3–4):239–267

    Article  Google Scholar 

  • Leloup PH, Arnaud N, Sobel ER, Lacassin R (2005) Alpine thermal and structural evolution of the highest external crystalline massif: the Mont Blanc. Tectonics 24(4)

    Google Scholar 

  • Monserrat O, Crosetto M (2008) Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J Photogram Remote Sens 63(1):142–154

    Article  Google Scholar 

  • Pratesi F, Nolesini T, Bianchini S, Leva D, Lombardi L, Fanti R, Casagli N (2015) Early warning GBInSAR-based method for monitoring Volterra (Tuscany, Italy) city walls. IEEE J Sel Top Appl Earth Obs Remote Sens 8(4):1753–1762

    Article  Google Scholar 

  • Perello P, Piana F, Martinotti G (1999) Neo-Alpine structural features at the boundary between the Penninic and Helvetic domains (Prè S. Didier-Entrèves, Aosta valley, Italy). Eclogae Geol Helv 92:347–359

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611

    Article  Google Scholar 

  • Sättele M, Bründl M, Straub D (2016) Quantifying the effectiveness of early warning systems for natural hazards. Nat Hazards Earth Syst Sci 16:149–166. doi:10.5194/nhess-16-149-2016

    Article  Google Scholar 

  • Schmid SM, Dèzes P, Ziegler PA (2004) Evolution of the European Cenozoic rift system: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389(1):1–33

    Google Scholar 

  • Severin J, Eberhardt E, Leoni L, Fortin S (2011) Use of ground-based synthetic aperture radar to investigate complex 3-D pit slope kinematics. In: Proceedings of slope stability 2011: international symposium on rock slope stability in open pit mining and civil engineering, Vancouver, pp 18–21

    Google Scholar 

  • Tapete D, Casagli N, Luzi G, Fanti R, Gigli G, Leva D (2013) Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J Archaeol Sci 40(1):176–189

    Article  Google Scholar 

  • Tarchi D, Fortuny-Guasch J, Leva D, Nico G, Sieber AJ (2003) Temporal analysis of a landslide by means of a ground-based SAR interferometer. IEEE Trans

    Google Scholar 

  • Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28(16):3425–3446

    Article  Google Scholar 

  • United Nations Environment Programme (UNEP), Various Authors (2012) 1972-2012: serving People and the Planet. ISBN 978-92-807-3323-5

    Google Scholar 

  • Voight B (1988) A method for prediction of volcanic eruption. Nature 332:125–130

    Article  Google Scholar 

  • Voight B (1989) A relation to describe rate-dependent material failure. Science 243:200–203

    Article  Google Scholar 

  • United Nations International Strategy for Disaster Reduction ISDR (2009) UNISDR, New York, NY

    Google Scholar 

Download references

Acknowledgements

The authors thank the Geological Surveys of Valle d’Aosta Region (RAVA) and ARPA Lombardia (Agenzia Regionale Protezione Ambientale) for providing the data used in this study. Furthermore, we want to thank Ellegi s.r.l. and Davide Leva for support in data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Alberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Alberti, S., Crosta, G.B., Rivolta, C. (2017). Statistical Analysis of Displacement Rate for Definition of EW Thresholds Applied to Two Case Studies. In: Mikoš, M., Arbanas, Ž., Yin, Y., Sassa, K. (eds) Advancing Culture of Living with Landslides. WLF 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-53487-9_32

Download citation

Publish with us

Policies and ethics