Advertisement

Physical Modelling of the Rainfall Infiltration Processes in Pyroclastic Soil Responsible of Landslide Trigger

  • Giovanna Capparelli
  • Pasquale Versace
  • Gennaro SpolverinoEmail author
Conference paper

Abstract

Landslides cause many damages to people, structures and infrastructure. The prediction of these natural processes is important. A good predictive model can allow the implementation of an equally good warning system, reducing the risk caused by such phenomenons (Capparelli et al. in “Ingredienti essenziali” di un sistema Early Warning per l’innesco di colate di fango in coltri di natura pirocalstica: resistenza a taglio in condizioni di parziale saturazione e curve di ritenzione idrica, 2014). There are many researches to understand the underlying processes trigger a landslide. Rainfall is the most common cause of landslides, so it is important to know the infiltration processes responsible for a failure. In our research, we study the infiltration processes, using an integrated approach, comparing data station in situ with the results and interpretations of physical models, trying to simulate with mathematical models. The aim is to observe and interpret laboratory tests to reproduce and simulate the phenomenon with mathematical models. The following we propose two tests carried out in laboratory scale using a physical model for the simulation of landslides induced by rainfall. The soil used for the tests was taken from the site Sarno (Southern Italy), near the volcano Vesuvius. This area had a mudflow in May 1998.

Keywords

Landslides Physical modelling of landslides Infiltration in pyroclastic soil 

References

  1. Capparelli G, Damiano E, Greco R, Netti N, Olivares L (2014) “Ingredienti essenziali” di un sistema Early Warning per l’innesco di colate di fango in coltri di natura pirocalstica: resistenza a taglio in condizioni di parziale saturazione e curve di ritenzione idrica. XXV Convegno Nazionale di GeotecnicaGoogle Scholar
  2. Cascini L, Sorbino G, Cuomo S, Ferlisi S (2014) Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy). LandslidesGoogle Scholar
  3. Damiano E, Olivares L, Picarelli L (2012) Steep-sope monitoring in unsaturated pyroclastic soils. Eng Geol 137–138:1–12Google Scholar
  4. Eckersley JD (1990) Instrumented laboratory flowslides. Géotechnique 40(3):489–502CrossRefGoogle Scholar
  5. Greco R, Guida A (2010) Determinazione sperimentale del legame tra permittività dielettrica e contenuto d’acqua in piroclastiti campane, XXXII Convegno Nazionale di Idraulica e Costruzioni IdraulicheGoogle Scholar
  6. Iverson RM, LaHusen RG (1989) Dynamic pore pressure fluctuations in rapidly shearing granular materials. Science 246:796–799CrossRefGoogle Scholar
  7. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522Google Scholar
  8. Olivares L, Damiano E, Greco R, Zeni L, Picarelli L, Minardo A, Guida A, Bernini R (2009) An instrumented flume to investigate the mechanics of rainfall-induced landslides in unsaturated granular soils. Geotech Test J ASTM 32(2):1–11Google Scholar
  9. Reder A, Pagano L, Picarelli L, Rianna G (2013) Prove d’infiltrazione in terreni piroclastici finalizzate allo studio della condizione al contorno inferiore. Incontro annuale ricercatori di geotecnica (IARG)Google Scholar
  10. Reder A, Rianna G, Pagano L (2014) Calibration of TDRs and heat dissipation probes in pyroclastic soils. Procedia Earth and Planetary Science, ElsevierGoogle Scholar
  11. Sorbino G, Nicotera MV, (2013) Unsaturated soil mechanics in rainfall-induced flow landslides. Eng Geol 165:105–132Google Scholar
  12. Spence KJ, Guymer I (1997) Small-scale laboratory flowslides. Géotechnique 47(5):915–932CrossRefGoogle Scholar
  13. Van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898CrossRefGoogle Scholar
  14. Wang G, Sassa K (2001) Factors affecting rainfall-induced landslides in laboratory flume tests. Géotechnique 51(7):587–599CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giovanna Capparelli
    • 1
  • Pasquale Versace
    • 1
  • Gennaro Spolverino
    • 1
    Email author
  1. 1.University of CalabriaRendeItaly

Personalised recommendations