Advertisement

Potential Effects of Climate Changes on Landslide Activity in Different Geomorphological Contexts

  • Guido RiannaEmail author
  • Luca Comegna
  • Stefano Luigi Gariano
  • Fausto Guzzetti
  • Paola Mercogliano
  • Luciano Picarelli
  • Paolo Tommasi
Conference paper

Abstract

The anthropogenic global warming could significantly affect weather patterns, with variable impacts at the regional scale. Geo-hydrological hazards represent an interesting example of the possible impacts. We present a study of the effects of potential climate change on slope stability conditions in two different contexts in the Italian Apennines. Although the two examined sites are 400 km apart, climate simulations return similar variations in weather patterns, which are characterized by a strong increase in air temperature, a reduction in seasonal cumulative precipitation, and an increase in daily precipitation. In spite of the similar input, the response of the two sites, lying respectively on saturated clays and on unsaturated non-plastic silts, might be completely different. Although these studies do not currently provide quantitative estimates, they represent a valuable support to policy makers and communities for the definition and prioritization of adaptation actions and for investments to cope with the expected climate changes.

Keywords

Adaptation to climate change Regional climate models Bias correction Clayey soils Pyroclastic soils Italy 

Notes

Acknowledgements

The contribution from the Italian Ministry of Education, University and Research and the Italian Ministry of Environment, Land and Sea under the GEMINA project is acknowledged.

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration (guidelines for computing crop water requirements). Food and Agriculture Organization (FAO), Rome, Italy, FAO Irrigation and Drainage Paper No. 56Google Scholar
  2. Boldini D, Comegna L, Rianna G, Tommasi P (2014) Evapotranspiration estimate in a clayey slope affected by landslide phenomena. Riv Ital Geotecnica 1:21–33Google Scholar
  3. Bucchignani E, Montesarchio M, Zollo AL, Mercogliano P (2015) High resolution climate simulations with COSMO-CLM over Italy: performance evaluation and climate projections for the XXI century. Int J Climatol. doi: 10.1002/joc.4379 Google Scholar
  4. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81(S1):7–30. doi: 10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  5. Comegna L, Picarelli L, Bucchignani E, Mercogliano P (2013a) Potential effects of incoming climate changes on the behaviour of slow active landslides in clay. Landslides 10:373–391. doi: 10.1007/s10346-012-0339-3 CrossRefGoogle Scholar
  6. Comegna L, Tommasi P, Picarelli L, Bucchignani E, Mercogliano P (2013b) The impact of climatic changes on the behaviour of active landslides in clay. In: Proceedings of II World Landslide Forum “landslide science and practice”, 3–7 Oct 2011, vol 4. Rome, Italy, pp 59–67Google Scholar
  7. Comegna L, Damiano E, Greco R, Guida A, Olivares L, Picarelli L (2016) Field hydrological monitoring of a sloping shallow pyroclastic deposit. Can Geotech J 53(7):1125–1237. doi: 10.1139/cgj-2015-0344 CrossRefGoogle Scholar
  8. Dixon N, Brook E (2007) Impact of predicted climate change on landslide reactivation: case study of Mam Tor, UK. Landslides 4:137–147. doi: 10.1007/s10346-006-0071-y CrossRefGoogle Scholar
  9. Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) Should we apply bias correction to global and regional climate model data? Hydrol Earth Syst Sci 16:3391–3404. doi: 10.5194/hess-16-3391-2012 CrossRefGoogle Scholar
  10. Greco R, Comegna L, Damiano E, Guida A, Olivares L, Picarelli L (2013) Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data. Hydrol Earth Syst Sci 17:4001–4013. doi: 10.5194/hess-17-4001-2013 CrossRefGoogle Scholar
  11. Hallegatte S, Mach KJ (2016) Make climate-change assessments more relevant. Nature 534(7609):613–615. doi: 10.1038/534613a CrossRefGoogle Scholar
  12. Lembo-Fazio A, Manfredini M, Ribacchi R, Sciotti M (1984) Slope failure and cliff instability in the Orvieto hill. In: Proceedings of IV international symposium on landslides, 16–21 Sept 1984, vol 2. Toronto, Canada, pp 115–121Google Scholar
  13. Meinshausen M, Smith S, Calvin K, Daniel J, Kainuma M, Lamarque JF, Matsumoto K, Montzka S, Raper S, Riahi K, Thomson A, Velders G, van Vuuren DP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 19(1–2):213–241. doi: 10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  14. Olivares L, Picarelli L (2003) Shallow flowslides triggered by intense rainfalls on natural slopes covered by loose unsaturated pyroclastic soils. Géotechnique 53(2):283–288CrossRefGoogle Scholar
  15. Rianna G, Zollo A, Tommasi P, Paciucci M, Comegna L, Mercogliano P (2014) Evaluation of the effects of climate changes on landslide activity of Orvieto clayey slope. Proc Earth Planet Sci 9:54–63. doi: 10.1016/j.proeps.2014.06.017 CrossRefGoogle Scholar
  16. Rianna G, Comegna L, Mercogliano P, Picarelli L (2016) Potential effects of climate changes on soil–atmosphere interaction and landslide hazard. Nat Hazards. doi: 10.1007/s11069-016-2481-z Google Scholar
  17. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli P, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24:4368–4384. doi: 10.1175/2011JCLI4104.1 CrossRefGoogle Scholar
  18. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  19. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29. doi: 10.1016/j.jhydrol.2012.05.052 CrossRefGoogle Scholar
  20. Tommasi P, Pellegrini P, Boldini D, Ribacchi R (2006) Influence of rainfall regime on hydraulic conditions and movement rates in the overconsolidated clayey slope of the Orvieto hill (central Italy). Can Geotech J 43(1):70–86. doi: 10.1139/cgj-2012-0121 CrossRefGoogle Scholar
  21. Tommasi P, Boldini D, Caldarini G, Coli N (2013) Influence of infiltration on the periodic re-activation of slow movements in an overconsolidated clay slope. Can Geotech J 50(1):54–67. doi: 10.1139/cgj-2012-0121 CrossRefGoogle Scholar
  22. Villani V, Rianna G, Mercogliano P, Zollo AL, Schiano P (2015) Statistical approaches versus weather generator to downscale RCM outputs to point scale: a comparison of performances. J Urban Environ Eng 8(2):142–154. doi: 10.4090/juee.2013.v8n2.142-154 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Guido Rianna
    • 1
    Email author
  • Luca Comegna
    • 2
  • Stefano Luigi Gariano
    • 3
    • 4
  • Fausto Guzzetti
    • 3
  • Paola Mercogliano
    • 1
    • 5
  • Luciano Picarelli
    • 2
  • Paolo Tommasi
    • 6
  1. 1.CMCC Foundation, Regional Models and Geo-hydrological ImpactsCapua CEItaly
  2. 2.Dipartimento di Ingegneria Civile, Design, Edilizia ed AmbienteUniversità degli Studi della Campania Luigi VanvitelliAversa CEItaly
  3. 3.Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle RicerchePerugiaItaly
  4. 4.Dipartimento di Fisica e GeologiaUniversità degli Studi di PerugiaPerugiaItaly
  5. 5.Meteo System & Instrumentation Laboratory C.I.R.A.—Italian Aerospace Research CenterCapua CEItaly
  6. 6.Istituto di Geologia Ambientale e GeoingegneriaConsiglio Nazionale delle RicercheRomeItaly

Personalised recommendations