Advertisement

Distribution Characteristics of Geohazards Induced by the Ludian Earthquake on 3 August, 2014 and a Comparison to the Jinggu and Yingjiang Earthquakes

  • Zhiqiang YinEmail author
  • Wuji Zhao
  • Yongqiang Xu
  • Lanpeng Sa
Conference paper

Abstract

On 3 August 2014, a M s 6.5 earthquake occurred near the city of Zhaotong in Ludian County, China. The earthquake caused 617 deaths and triggered more than 1700 geohazards, most notably the large Hongshiyan, Wangjiapo, and Ganjiazhai landslides. In 2014, the Jinggu (M s 6.6) and Yingjiang (M s 6.1) earthquakes also occurred in the same region. In this study, the authors compared the relationships between geohazards and earthquake magnitude, fault activity, geomorphology, slope angle, seismic intensity, and population density in the three earthquakes areas. In addition, the concept of “dry” landslides is proposed. Some of the conclusions are as follows: (1) The number of geohazards significantly increased after the Ludian earthquake; (2) Large-scale landslides are controlled by active faults; (3) There is a strong correlation between topographic elevation at which geohazards occur and microtopography; (4) Slope angles in the Ludian earthquake area are significantly steeper than in the Jinggu and Yingjiang earthquake areas, with slope angles being a key factor for landslide development; (5) Mountains, canyons, rivers, river terraces, and towns are interdependent in southwestern China, which means that post-earthquake reconstruction must pay attention not only to seismic issues, but also consider geohazard prevention and geological environmental safety.

Keywords

Ludian earthquake Geohazards Distribution characteristics Comparative study 

Notes

Acknowledgements

The research work described herein were funded by the National Nature Science Foundation of China under Grant No. 41372333 and funded by the Ministry of Land and Resources’ special funds for scientific research on public interests under Grant No. 201211055. The financial supports are gratefully acknowledged.

References

  1. Calcaterra D, Parise M (eds) (2010) Weathering as a predisposing factor to slope movements. Geological Society of London, Engineering Geology Special Publication no. 23, 233 pGoogle Scholar
  2. Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geol Soc Am Bull 100:1054–1068CrossRefGoogle Scholar
  3. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation research board special report, 247. National Academy Press, WA, pp 36–75Google Scholar
  4. Evans SG, Delaney KB, Hermanns RL, Strom A, Scarascia-Mugnozza G (2011) The formation and behaviour of natural and artificial rockslide dams; implications for engineering performance and hazard management. In: Evans SG, Hermanns RL, Strom AL, Scarascia Mugnozza G (eds) Natural and artificial rockslide dams. Lecture series in earth sciences. Springer, Berlin, pp 1–76Google Scholar
  5. Gorum T, Fan XM, van Westen C et al (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133:152–167CrossRefGoogle Scholar
  6. Gringeri PF, Nicoletti PG, Parise M (2002) Historical and geological evidence for seismic origin of newly recognised landslides in south-eastern Sicily, and its significance in terms of hazard. Environ Manage 29:116–131CrossRefGoogle Scholar
  7. Hu J, Li B, Tang LM et al (2007) Study on characteristics and formation factor of geological hazards in Ludian County of Yunnan Province. J Geol Hazards Environ Preserv 18(4):15–19Google Scholar
  8. Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238CrossRefGoogle Scholar
  9. Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transp Res Rec 1411:9–17Google Scholar
  10. Jibson RW, Prentice CS, Borissoff BA, Rogozhin EA, Langer CJ (1994) Some observations of landslides triggered by the 29 April, 1991 Racha earthquake, Republic of Georgia. Bull Seismol Soc Am 84:963–973Google Scholar
  11. Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421CrossRefGoogle Scholar
  12. Li HZ, Wang TL, Duan W et al (2006) Geological study on mechanism of Jinpingzi landslide and evolution of landform of Jinsha River. J Yangtze River Sci Res Inst 23(4):17–22Google Scholar
  13. Li ZQ, Yuan YF, Li XL et al (2008) Preliminary research on the characteristics of the MS 8.0 Wenchuan earthquake hazard. Seismol Geol 30(4):855–876Google Scholar
  14. Nicoletti PG, Parise M (2002) Seven landslides dams of old seismic origin in southeastern Sicily (Italy). Geomorphology 46(3–4):203–222CrossRefGoogle Scholar
  15. Nicoletti PG, Parise M, Miccadei E (1993) The Scanno rock avalanche (Abruzzi, south-central Italy). Boll Soc Geol Ital 112:523–535Google Scholar
  16. Parise M, Wasowski J (1999) Landslide activity maps for the evaluation of landslide hazard: three case studies from Southern Italy. Nat Hazards 20(2/3):159–183CrossRefGoogle Scholar
  17. Parise M, Jibson RW (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the January 17, 1994, Northridge, California, earthquake. Eng Geol 58(3–4):251–270CrossRefGoogle Scholar
  18. Schuster RL (1986) Landslide dams: processes, risk, and mitigation. Geotechnical Special Publication, vol 3. American Society of Civil Engineering, New York, 164 pGoogle Scholar
  19. Sun JJ, Yuan YF, Wen ZP et al (2008) The Chinese seismic intensity scale. China Standards Press, BeijingGoogle Scholar
  20. Tang C, Zhu J, Qi X et al (2011) Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: a case study in the Beichuan area of China. Eng Geol 122:22–33CrossRefGoogle Scholar
  21. Wang ZH (1996) Reomte sensing investation for a huge landslide-Qiaojia County landslide. Remote Sens Environ 1(4):280–284Google Scholar
  22. Wen XZ, Du F, Yi GX et al (2013) Earthquake potential of the Zhaotong and Lianfeng fault zones of the eastern Sichuan-Yunnan border region. Chin J Geophys 56(10):3361–3372Google Scholar
  23. Xu SH, Wu ZJ, Sun JJ (2013) Study of the characteristics and inducing mechanism of typical earthquake landslide of the Minxian-Zhangxian MS 6.6 earthquake. China Earthq Eng J 35(3):471–476Google Scholar
  24. Yan XS, Zhu CB, Zhang J et al (2014) Report on “5 · 24” and 5 · 30” potential geohazards triggered by earthquake emergency survey in Yiangjiang County, Dehong of Yunnan Province. Yunnan Institute of Geoenvironmental Monitoring, YunnanGoogle Scholar
  25. Yin YP (2011) Remote sensing research on Daguangbao gigantic rockslide triggered by Wenchuan earthquake. J Eng Geol 19(5):674–684Google Scholar
  26. Yin ZQ, Chen HQ, Chu HL et al (2013) Analysis on the key controlling factors of geohazards triggered by five typical earthquake events in China since 2008. Earth Sci Front 20(6):289–302Google Scholar
  27. Yin ZQ, Qin XG, Zhao WJ et al (2014a) Distribution characteristics of Geo-disasters Induced by Ms 7.0 Lushan Earthquake and Compare to them of Ms 8.0 Wenchuan Earthquake. J Earth Sci 25(5):18–35Google Scholar
  28. Yin ZQ (2014b) The spatial and temporal distribution, evolution process and key triggering factors of super large scale landslides in the middle upper reaches of Yellow River. The Doctor’s Degree Thesis of University of Chinese Academy of Sciences, Beijing, pp 36–45Google Scholar
  29. Yin ZQ, Xu YQ, Chen HQ et al (2015) Study on the distribution characteristics of geohazards and the causative tectonic of the Minxian-Zhangxian Ms 6.6 earthquake on 22 July, 2013, Gansu, China. Quat Sci 35(1):77–88Google Scholar
  30. Zhang XB, David H, Liu WM et al (2013) Terraces of ancient giant Jintang landslide-dammed Lake in Jinsha River. J Mt Sci 31(1):127Google Scholar
  31. Zheng WJ, Min W, He WG et al (2013) Distribution of the related disaster and the causative tectonic of the Minxian-Zhangxian MS 6.6 earthquake on July 22, 2013, Gansu, China. Seismol Geol 35(3):604–615Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zhiqiang Yin
    • 1
    Email author
  • Wuji Zhao
    • 2
  • Yongqiang Xu
    • 1
  • Lanpeng Sa
    • 3
  1. 1.China Institute of Geo-environment MonitoringBeijingPeople’s Republic of China
  2. 2.Department of Architectural EngineeringBinzhou UniversityBinzhouPeople’s Republic of China
  3. 3.Yunnan Institute of Geological Engineering Investigation and Design, Zhaotong BranchZhaoyang DistrictPeople’s Republic of China

Personalised recommendations