Coupled Slope Collapse—Cryogenic Processes in Deglaciated Valleys of the Aconcagua Region, Central Andes Open image in new window

  • Stella Maris MoreirasEmail author
Conference paper


This paper presents coupled geomorphological processes such as glacial advances, gravitational collapses, and solifluction engaged to the environment climate changes. Complex landslides with a puzzling classification were identified by a landslide inventory of the Aconcagua Park involving the highest peak of South America (Aconcagua peak 6958 m a.s.l.). These deformed deposits were interpreted as gravitational collapsed moraines occurred after the Holocene–Pleistocene ice retreat on these Andean valleys. The stabilized huge masses began to be partially remobilized by solifluction phenomena generating protalus ramparts. At present well developed debris rock glaciers are established at the top landslide surfaces. This finding confirms glacial/interglacial cycles in the Central Andes are related to glacial advances supported by preserved moraines and gravitational collapses caused by ice loss during glacial retreat. However, the occurrence of cryogenic processes after collapse could evidence a periglacial environment restoration linked to a colder period. Therefore, available debris/sediments infilling deglaciated valleys will be mainly mobilized by glaciers, slope collapses or periglacial processes depending on the climate environment conditions.


Complex landslides Permafrost degradation Debris rock glaciers Paleo-climate 



The research was funded by SECTYP 2011–2013 leader by Moreiras.


  1. Abele G (1974) Bergstürze in den Alpen: the Verbreitung, Morphologie und Folgeerscheinun-gen. Wissenschaftliche Alpenvereinshefte, Heft 25, MunchenGoogle Scholar
  2. Abele G (1984) Derrumbes de montaña y morenas en los Andes chilenos. Revista de Geografía Norte Grande 11:17–30Google Scholar
  3. Antinao JL, Gosse J (2009) Large rockslides in the Southern Central Andes of Chile (32–34.5°S): tectonic control and significance for Quaternary landscape evolution. Geomorphol 104:117–133CrossRefGoogle Scholar
  4. Caviedes C (1972) Geomorfología del Cuaternario del valle de Aconcagua, Chile Central. Freiburger Geographische Hefte 11:153Google Scholar
  5. Espizúa LE (1993) Quaternary Glaciations in the Rio Mendoza Valley, Argentine Andes. Quat Res 40:150–162CrossRefGoogle Scholar
  6. Espizúa LE (1999) Chronology of late Pleistocene glacier advances in the Río Mendoza Valley, Argentina. Glob and Planet Change 22: 193–200CrossRefGoogle Scholar
  7. Espizúa LE (2004) Pleistocene glaciations in the Mendoza Andes. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations extent and chronology, Part III. Elsevier, 69–73Google Scholar
  8. Espizúa LE (2005) Megadeslizamientos pleistocénicos en el valle del río Mendoza, Argentina. In: Proceedings of XVI Congreso geológico Argentino, La Plata, vol 3, pp 477–482Google Scholar
  9. Espizúa LE, Bigazzi G (1998) Fission-track dating of the punta de vacas glaciation in the rio Mendoza valley, Argentina. Quat Sci Rev 17:755–760CrossRefGoogle Scholar
  10. Fauqué L, Hermanns RL, Wilson CGJ (2009a) Mass removal in the Andean region. Revista de la Asociacion Geologica Argentina 65(4):687Google Scholar
  11. Fauqué L, Hermanns R, Hewitt K, Wilson C, Baumann V, Lagorio SY Di Tomasso I (2009b) Mega-landslide in the South face of Aconcagua mount and its relation with deposits associated with a Pleistocene glaciation. Revista de la Asociación Geológica Argentina 65(4):691–712.cGoogle Scholar
  12. González Díaz EF (2003) El englazamiento en la región de la caldera de Caviahue-Copahue (Provincia del Neuquén): Su reinterpretación. Revista de la Asociación Geológica Argentina 58(3): 356–366 (Buenos Aires)Google Scholar
  13. González Díaz EF (2005) Geomorfología de la región del volcán Copahue y sus adyacencias (centro-oeste del Neuquén). Revista de la Asociación Geológica Argentina, 60(1):072–087 (Buenos Aires)Google Scholar
  14. Hermanns R, Fauqué F, Wilson C (2015) 36Cl terrestrial cosmogenic nuclide dating suggests Late Pleistocene to Early Holocene mass movements on the south face of Aconcagua mountain and in the Las Cuevas-Horcones valleys, Central Andes, Argentina. In: Geodynamic Processes in the Andes of Central Chile and Argentina, Special Publication, Geological Society of London, 399. doi: 10.1144/SP399.19 CrossRefGoogle Scholar
  15. Koeppen W (1948) Climatología. Fond de Cult Econ, MéxicoGoogle Scholar
  16. Marangunic C, Thiele R (1971) Procedencia y determinaciones gravimétricas de espesor de la morrena de la Laguna Negra, Provincia de Santiago. Comunicaciones 38:25Google Scholar
  17. Moreiras SM (2006) Chronology of a Pleistocene rock avalanche probable linked to neotectonic, Cordon del Plata (Central Andes), Mendoza—Argentina. Quat Int 148(1):138–148CrossRefGoogle Scholar
  18. Moreiras SM, Hermanns R, Fauqué L (2015) Cosmogenic dating of rock avalanches constraining quaternary stratigraphy and regional neotectonics in the Argentine Central Andes (32°S). Quat Sci Rev 112:45–58CrossRefGoogle Scholar
  19. Moreiras SM, Lenzano MG, Riveros N (2008) Inventario de procesos de remoción en masa en el Parque provincial Aconcagua, provincia de Mendoza—Argentina. Multiequina Lat Am J Nat Resour 17:129–146Google Scholar
  20. Moreiras SM, Páez MS, Lauro C, Jeanneret P (2016) First cosmogenic ages for glacial deposits from the Plata range (33°S): New inferences for Quaternary landscape evolution in the Central Andes. Quaternary International. Special volume. Interactions between Quaternary climatic forcing, tectonics and volcanism along some different tectonic settings of South America Quaternary International (in press). doi: 10.1016/j.quaint.2016.08.041 CrossRefGoogle Scholar
  21. Moreiras SM, Sepúlveda SA (2015) Megalandslides in the Andes of Central Chile and Argentina (32–43°S) and potential hazards. In: Geodynamic processes in the Andes of Central Chile and Argentina. Special Publication 399, Geol Soc of London 399:329–344Google Scholar
  22. Pereyra FX (1995) Esquema geomorfológico del sector norte del valle del río Las Cuevas, entre Puente del Inca y Las Cuevas, Prov. de Mendoza. Revista de la Asociación Geológica, Argentina 50(1–4):103–110Google Scholar
  23. Ramos VA (1996) Evolución tectónica de la alta cordillera de San Juan y Mendoza. En Ramos VA (ed) Geología de la región del Aconcagua, provincias de San Juan y Mendoza. Subsecretaría de Minería de la Nación, Dirección Nacional del Servicio Geológico, Anales 24(12):447–460. (Buenos Aires)Google Scholar
  24. Rosas M, Wilson C, Hermanns H, Fauqué L, Baumann V (2008) Avalanchas de rocas de las Cuevas una evidencia de la desestabilización de las laderas como consecuencia del cambio climático del Pleistoceno superior. Proccedings of the XVII Congreso Geológico Argentino, Jujuy: 313–314Google Scholar
  25. Salomón JN (1969) El alto valle del río Mendoza. Estudio de geomorfología. Boletín de Estudios Geográficos, vol XVI, N° 62:1–50Google Scholar
  26. WP/WLI (1993) Multilingual landslide glossary. Bi-Tech Publishers, Richmond, British Columbia Canada, 59Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CONICET- IANIGLA (CCT Mendoza)MendozaArgentina
  2. 2.Fac. de Cs Agrarias. Univ. Nacional de Cuyo. a. Brown S/NMendozaArgentina

Personalised recommendations