Skip to main content

Effects of Random Sampling on SVM Hyper-parameter Tuning

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2016)

Abstract

Hyper-parameter tuning is one of the crucial steps in the successful application of machine learning algorithms to real data. In general, the tuning process is modeled as an optimization problem for which several methods have been proposed. For complex algorithms, the evaluation of a hyper-parameter configuration is expensive and their runtime is speed up through data sampling. In this paper, the effect of sample sizes to the results of hyper-parameter tuning process is investigated. Hyper-parameters of Support Vector Machines are tuned on samples of different sizes generated from a dataset. Hausdorff distance is proposed for computing the differences between the results of hyper-parameter tuning on two samples of different size. 100 real-world datasets and two tuning methods (Random Search and Particle Swarm Optimization) are used in the experiments revealing some interesting relations between sample sizes and results of hyper-parameter tuning which open some promising directions for future investigation in this direction.

Tomáš Horváth is also a member of the Institute of Computer Science, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://archive.ics.uci.edu/ml/.

  2. 2.

    Particle swarm optimization has been successfully used in partially irregular or noisy optimization problems, and, often performs well, finding good solutions because it does not make any assumption about the search landscape.

  3. 3.

    https://www.r-project.org/.

  4. 4.

    https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

  5. 5.

    According to the parameter K of the Algorithm 1 set to 30 in the experiment.

  6. 6.

    Supported by the Brazilian Funding Agencies CAPES, CNPq and São Paulo Research Foundation FAPESP (CeMEAI-FAPESP process 13/07375-0 and grant #2012/23114-9), and, the Slovakian project VEGA 1/0475/14.

References

  1. Bendtsen, C.: pso: Particle Swarm Optimization, R package version 1.0.3 (2012)

    Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Braga, I., Carmo, L.P., Benatti, C.C., Monard, M.C.: A note on parameter selection for support vector machines. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013. LNCS (LNAI), vol. 8266, pp. 233–244. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45111-9_21

    Chapter  Google Scholar 

  4. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

    Article  Google Scholar 

  5. Cochran, W.G.: Sampling Techniques, 3rd edn. Wiley, New York (1977)

    MATH  Google Scholar 

  6. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. Neurocomputing 64, 107–117 (2005)

    Article  Google Scholar 

  7. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  9. Lang, K., Liberty, E., Shmakov, K.: Stratified Sampling Meets Machine Learning (2015)

    Google Scholar 

  10. Mantovani, R.G., Rossi, A.L.D., Vanschoren, J., Bischl, B., de Carvalho, A.: Effectiveness of random search in SVM hyper-parameter tuning. In: International Joint Conference on Neural Networks, pp. 1–8 (2015)

    Google Scholar 

  11. Mantovani, R.G., Rossi, A.L.D., Vanschoren, J., Bischl, B., de Carvalho, A.: To tune or not to tune: recommending when to adjust SVM hyper-parameters via meta-learning. In: 2015 International Joint Conference on Neural Networks, pp. 1–8 (2015)

    Google Scholar 

  12. Mantovani, R.G., Rossi, A.L.D., Vanschoren, J., Carvalho, A.C.P.D.L.: Meta-learning recommendation of default hyper-parameter values for SVMs in classification tasks. In: 2015 International Workshop on Meta-Learning and Algorithm Selection at ECML/PKDD, pp. 80–92 (2015)

    Google Scholar 

  13. Meng, X.: Scalable simple random sampling and stratified sampling. In: JMLR Workshop and Conference Proceedings, vol. 28, pp. 531–539 (2013)

    Google Scholar 

  14. Momma, M., Bennett, K.P.: A pattern search method for model selection of support vector regression. In: SIAM International Conference on Data Mining. SIAM (2002)

    Google Scholar 

  15. Reif, M., Shafait, F., Goldstein, M., Breuel, T., Dengel, A.: Automatic classifier selection for non-experts. Pattern Anal. Appl. 17(1), 83–96 (2014)

    Article  MathSciNet  Google Scholar 

  16. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: NIPS, pp. 2960–2968 (2012)

    Google Scholar 

  17. Soares, C., Brazdil, P.B.: Selecting parameters of SVM using meta-learning and kernel matrix-based meta-features. In: ACM Symposium on Applied computing, pp. 564–568. ACM (2006)

    Google Scholar 

  18. Taha, A.A., Hanbury, A.: An efficient algorithm for calculating the exact hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2153–2163 (2015)

    Article  Google Scholar 

  19. Tillé, Y.: Sampling Algorithms. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  20. Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M.: Swarm Intelligence and Bio-Inspired Computation: Theory and Applications. Elsevier, Amsterdam (2013)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Horváth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Horváth, T., Mantovani, R.G., de Carvalho, A.C.P.L.F. (2017). Effects of Random Sampling on SVM Hyper-parameter Tuning. In: Madureira, A., Abraham, A., Gamboa, D., Novais, P. (eds) Intelligent Systems Design and Applications. ISDA 2016. Advances in Intelligent Systems and Computing, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-319-53480-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53480-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53479-4

  • Online ISBN: 978-3-319-53480-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics